Perennial ryegrass grazing management in spring

Paddock guide
SECTION 1 – IDENTIFICATION: identifying and understanding perennial ryegrass plants.

SECTION 2 – LEAF STAGE: assessing leaf stage and how to use the leaf stage principle to maximise pasture performance.

SECTION 3 – PASTURE ALLOCATION: assessing pre-grazing yields and allocating pasture to achieve high animal performance.

SECTION 4 – POST GRAZING RESIDUALS: assessing post-grazing residuals using photos and descriptions.

SECTION 5 – DECISION SUPPORT TOOL: a tool to help you achieve a good balance between pasture and animal performance.

Authors: Sean McCarthy, Cáthal Wims, Julia Lee – DairyNZ. Danny Donaghy – Massey University.

We thank the farmers and our DairyNZ colleagues whose contributions have enhanced this booklet.
How to use this booklet

This booklet provides information to enable you to answer key grazing management questions:

- Is this perennial ryegrass?
- At what leaf stage am I grazing pastures?
- Is my pre-grazing yield on target?
- Am I achieving target post-grazing residuals?
- Am I using a combination of animal and pasture indicators to make profitable feeding decisions?
Perennial ryegrass

- Leaves: hairless, defined mid-rib, ribbed on upper surface, shiny underneath
- The emerging leaf is folded
- Reddish/purple base
 Dead leaf material may need to be peeled back to see this
- Plants are made up of a number of tillers
- Each tiller:
 - has its own leaves and roots
 - maintains three live leaves which develop from the growing point at the base of the tiller
 - is capable of producing new or daughter tillers
 - has one leaf growing at a time – as the fourth new leaf emerges, the oldest leaf dies
 - lives for about one year
- Spring and autumn are key periods of tillering - production/growth of new tillers
- Tillers can be classified as vegetative (leafy) or reproductive
- A reproductive tiller can be identified by looking for, or feeling for, nodes on the stem
- When tillers become reproductive the stem elongates and eventually, if the tiller is not grazed, a seed-head is produced
- Poa and Italian ryegrass are commonly mistaken for perennial ryegrass.
Leaf stage approach to grazing management

Leaf stage:
- determined by the number of leaves per tiller
- can be used to identify when a paddock is ready to be grazed
- reflects the tillers energy status and ability to recover after grazing
- is only measured on vegetative (leafy) tillers.

- Graze between the 2 and 3 leaf stages of regrowth to optimise production of high quality pasture; earlier if canopy closure occurs (see p12)
 - Grazing may occur closer to the 2-leaf stage when demand per hectare is low or when moving into surplus
- After the 3-leaf stage, older leaves die resulting in wastage and feed quality falls as dead material builds up.
Pasture mass (kg DM/ha) vs Plant energy reserves in the stubble

% of high quality leaf growth

15-25%
35-40%
40-50%

TARGET GRAZING WINDOW

Replenishment by photosynthesis

Energy for new leaves
Energy to roots
Energy for new tillers

Leaf stage of regrowth

TIP: First leaf contributes less when using low N inputs or grazing below target residuals.
Steps to estimate leaf stage
– to the nearest ½ leaf

1. Choose a perennial ryegrass tiller
2. Check if the tiller is vegetative
3. Check if the tiller has a remnant leaf (one that was grazed at the last grazing and has a blunt tip). If more than one remnant leaf just include the uppermost remnant leaf.

Note: Leaves are fully grown when the next leaf has begun to emerge. For the uppermost leaf you may need to unfold it along the mid-rib to check this.
4. How big is the remnant leaf compared with the leaf above it (first new leaf)?

Less than ½ the size
Do not count it

Greater than ½ the size
Count it as ½

5. How many fully grown leaves with pointy tips are there?

1. Count it as 1

2. Count them as 2

3. Count them as 3

6. If uppermost leaf is not fully grown how big is it compared with the leaf below it?

Less than ½ the size
Do not count it

½ the size
Count it as ½

~ the full size
Count it as 1

REPEAT FOR 10 TILLERS.
1 – leaf stage

- 1st new leaf
- 2nd new leaf appearing
- Remnant leaf

2 – leaf stage

- 1st new leaf
- 2nd new leaf
- 3rd new leaf appearing
- Remnant leaf

TIP: If blunt tips are visible across the paddock then not at 2-leaf stage.
3 – leaf stage

- 1st new leaf
- 2nd new leaf
- 3rd new leaf
- 4th new leaf appearing
- Remnant leaf

4 – leaf stage

- 1st leaf (dying/dead)
- 2nd new leaf
- 3rd new leaf
- 4th new leaf
- 5th new leaf

TIP: If decayed full leaves are visible in the base of the pasture, then it’s beyond the 3-leaf stage.

At the 4-leaf stage there is often no remnant leaf as it has decayed.
Canopy closure

If pastures are at or nearing canopy closure they need to be grazed or conserved regardless of leaf stage.

- Standing in the paddock you can’t see the base of the pasture and very little bare ground or soil
- Grass leaves beginning to fold over rather than stand upright
- Yellowing at base.

Canopy closure = ↑ shading, ↑ tiller death, ↓ new tiller growth, ↓ clover content, ↑ aerial tillers, ↑ stem production.

If canopy closure is happening repeatedly, re-assess nitrogen policy, check target residuals are being achieved and ensure rotation length is not too long.
Pasture allocation

Correct assessment of pre-grazing yields will enable:
- good allocation of pasture to the herd
- management of yields within the desired range
- good animal performance – focus on quality and leaf content
- target post-grazing residuals to be achieved.

Walk into the paddock and observe variation in pasture, weeds, bare patches etc and score accordingly.

Target pre-grazing yield

Stocking rate (cows/ha) x pasture requirement (kg DM/cow/day) x rotation length (days) + residual (kg DM/ha)

\[\text{e.g. } (3 \times 18 \times 21) + 1500 = 2634 \text{ kg DM/ha} \]

Pasture quality

<table>
<thead>
<tr>
<th>Energy (MJ ME/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green leaf</td>
</tr>
<tr>
<td>Soft stem</td>
</tr>
<tr>
<td>Hard mature stem</td>
</tr>
<tr>
<td>Dead material</td>
</tr>
</tbody>
</table>

HINT: A crossbred cow producing 1.8 kg MS will require 16 kg DM of 12 ME pasture or 18 kg DM of 11 ME pasture.

TIP: Manage the pasture to look after your cows.
2000 kg DM/ha

2500 kg DM/ha
3000 kg DM/ha

3500 kg DM/ha
Post-grazing residuals

Focus on the post-grazing residuals to optimise pasture utilisation and subsequent pasture growth and quality.

Target a post-grazing residual of 1500-1600 kg DM/ha or 7-8 clicks using a rising plate meter during spring and early summer (calving to Christmas)

- Lower residuals will reduce regrowth
- Higher residuals reduce pasture quality at subsequent grazings and increase pasture wastage.

Achieving target post-grazing residuals and good animal performance requires:

- Accurate pasture allocation
- Maintaining pre-grazing cover around 2800-3200 kg DM/ha during spring
- Use of corrective actions when targets are not met.

TIP: Think of a simple way to record residuals daily such as on the whiteboard in the farm dairy.
Schematic representation of target post-grazing residual height (compressed height) throughout the season.

<table>
<thead>
<tr>
<th>Season</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>10 cm</td>
</tr>
<tr>
<td>Summer</td>
<td>8 cm</td>
</tr>
<tr>
<td>Autumn</td>
<td>6 cm</td>
</tr>
<tr>
<td>Winter</td>
<td>4 cm</td>
</tr>
</tbody>
</table>

1 cm = 2 clicks
clicks x 140 + 500 = kg DM/ha

RPM = rising plate meter

<table>
<thead>
<tr>
<th>cm</th>
<th>clicks</th>
<th>kg DM/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>1340</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1620</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>1900</td>
</tr>
</tbody>
</table>

Minimal impact on growth during winter and set up pastures for spring.
1300 kg DM/ha or 6 clicks
- Very little to no leaf remaining in the paddock
- Lot of bare ground or soil visible
- Little herbage remaining around the clumps and the clumps are not obvious in the paddock

RESIDUAL BELOW TARGET/OVER-GRAZED
1500 kg DM/ha or 7 clicks
• Very little leaf remaining between the clumps
• Clumps are small with a “sharp” shape and are distinct across the paddock (dinner plate size)
• Tops and sides of the clumps are well eaten into
• Clumps make-up ~15% of the area

TIP: Cows will only willingly eat what’s grown since the last grazing.

TARGET RESIDUAL 7-8 CLICKS
1750 kg DM/ha or 9 clicks
• Quite a bit of length / grazeable green leaf between the clumps
• Grazeable leaf remaining around the clumps
• Clumps not as “sharp” as with 1500kg DM/ha
• Some uneaten leaves in area between clumps (“waving in the wind”).

RESIDUAL ABOVE TARGET/UNDER-GRAZED
1900 kg DM/ha or 10 clicks
• Between the clumps is not grazed well
• Good quality, grazable leaf remaining
• Very large, rounded clumps with some clumps completely un-grazed
• Little herbage is removed from around dung pads
• Clumps make-up ~30% of the area

RESIDUAL ABOVE TARGET/UNDER-GRAZED
1500 vs 1700 kg DM/ha

1500 kg DM/ha

1700 kg DM/ha

- More leaf remaining
- Some grazeable leaves between clumps “waving in the wind”.
1700 vs 1900 kg DM/ha

1700 kg DM/ha

1900 kg DM/ha

- Larger clumps
- More green leafy material remaining
- Some clumps entirely ungrazed.

TIP: “Turn that grass into milksolids. Use it or lose it.”
1300 vs 1900 kg DM/ha

1300 kg DM/ha (6 clicks)
- Good pasture quality at next grazing
- Pasture yield reduced due to an increased ‘lag phase’ in the regrowth cycle
- Repeatedly grazing to this level will reduce persistence.

1900 kg DM/ha (10 clicks)
- Will lead to reduced quality and reduced effective tillering and persistence
- Review pasture allocation
- If pre-grazing covers are above target consider closing paddocks for silage.
Residuals from different pre-grazing yields

1500 kg DM/ha from pre-grazing of 2800 kg DM/ha
- Green colour at base.

1700 kg DM/ha from pre-grazing of 4000 kg DM/ha
- Pale colour at base (stemmy).
TARGET: 7-8 clicks – late spring
• Very little leaf remaining between the clumps
• Majority of clumps are small and distinct
• Tops and sides of the clumps well eaten into and have a sharp shape
• Slight increase in dead material in the base of pasture compared to early spring
• Pasture moving to reproductive state – change in colouration in the base – more stem
• Clumps make-up ~15% of the area.
Poor grazing management

Possible causes:
- Above target pre-grazing yield
- Above target post-grazing residuals
- Grazed beyond 3-leaf stage.

Consequences:
- Long stem remaining
- Unable to achieve target residual without severely impacting animal performance
- Wasted pasture.

Actions:
- Graze with dry cows, earmark for silage or top to reset the post-grazing residuals to 7-8 clicks.

REMEMBER: “Quality is king.”
Wet weather management

Seek to minimise pugging and compaction damage.

A decline in pasture utilisation may have to be accepted in order to minimise soil and pasture damage, resulting in higher than desired post-grazing residuals at this grazing event. Corrective action must be taken at the next grazing to reset the post-grazing residual.

Management options:

- Select drier paddocks or cropping paddocks
- On/off grazing
- Graze lower pre-grazing yield and therefore allocate a larger area per day for a short period
- Accept higher residuals at this grazing event and use corrective action when able

- Use back fencing to prevent repeated pugging
- Use gateways and races effectively.

Consider impact of reduced utilisation on feed offered.

Subsequent management:

- Aim to promote tillering and pasture recovery by achieving target pre-grazing yields and residuals, and through the use of nitrogen fertiliser
- Keep a record of wet/damaged paddocks
- Avoid successive pugging events in individual paddocks.
Decision support tool

Put a ✓ in the coloured cell that best describes your situation. Complete as many rows as possible.

Add up the ✓’s in each column – if you have a high number in the Green column you are on target, a high number in Orange indicates you are slightly off target and a high number in a Red column indicates you are well off target.

ASSESSING ROTATION LENGTH

<table>
<thead>
<tr>
<th></th>
<th>Too short</th>
<th>TARGET</th>
<th>Too long</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-GRAZING YIELD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current leaf stage</td>
<td>1 per tiller</td>
<td>1-2 per tiller</td>
<td>2-3 per tiller</td>
</tr>
<tr>
<td>Does grazing now reduce potential DM eaten in this paddock?</td>
<td>Growth reduced considerably</td>
<td>Growth reduced</td>
<td>No</td>
</tr>
<tr>
<td>Has canopy closure occurred in this paddock?</td>
<td>-</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

ASSESSING FEEDING LEVEL

<table>
<thead>
<tr>
<th></th>
<th>Suggests inadequate feeding</th>
<th>TARGET</th>
<th>Suggests over feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST-GRAZING RESIDUAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall height</td>
<td>Less than 5 clicks</td>
<td>5-7 clicks</td>
<td>7-8 clicks</td>
</tr>
<tr>
<td>Proportion of area covered by clumps</td>
<td>None</td>
<td>Less than 10%</td>
<td>10-20%</td>
</tr>
<tr>
<td>Grazing of clumps</td>
<td>Completely grazed</td>
<td>Few small clumps</td>
<td>Small and sharp</td>
</tr>
<tr>
<td>Grazable leaf remaining</td>
<td>None</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
SUPPLEMENT

Is supplement being wasted in paddock?	-	-	No	Small amount	Lots
Does the herd require supplement?	Yes, large deficit	Yes, small deficit	No, small surplus	No, large surplus	
Is supplement being wasted in the system?	-	-	No	Small amount	Lots

COW BEHAVIOUR

| The herd on entering the paddock | Run and bellow | Some bellowing | Graze quietly | - | Little grazing/lie down |

PASTURE QUALITY AND REGROWTH

| Paddock regrowth and quality at the next grazing | Considerably reduced regrowth | Reduced regrowth | Maximum regrowth and quality | Reduced quality | Considerably reduced quality |

MILK PRODUCTION

| Have I optimised immediate and future milk production from pasture? | No, well below, cows over-grazed | No, below, cows over-grazed | Yes, target production and residuals | No, grazable pasture left | No, lots of grazable pasture left |

TOTAL NUMBER OF ✔
Useful calculations

Leaf emergence rates

Leaf emergence rate = days since grazing / leaf stage

- If pastures are at the 2-leaf stage 20 days after grazing the leaf emergence rate is 10 days (20/2)
 - pastures will be at the 3-leaf stage in ~30 days
- Leaf emergence rate will not be less than 8 days
- Depends on temperature and moisture.

Estimating days since paddock was grazed

Leaf stage x leaf emergence rate

e.g. 2 x 10 = 20 days

Rotation length

Rotation length = total area ÷ area grazed

Area to graze = total area ÷ rotation length
Pasture allocation

HERD DEMAND

Required per cow \times number of cows = demand
e.g. $18 \times 200 = 3600$ kg DM

SUPPLY PER HECTARE

Pre-grazing yield $-$ residual = supply
e.g. $2800 - 1500 = 1300$ kg DM/ha

AREA REQUIRED

Demand \div supply = area required
e.g. $3600 \div 1300 = 2.8$ ha/day

$(\text{Area} \times \text{supply}) \div \text{number of cows} = \text{pasture available/cow}$
e.g. $(2.8 \times 1300) \div 200 = 18$ kg DM

Area allocation

M² PER COW TO COWS PER HA

$10,000 \div \text{m}²/\text{cow} = \text{cows/ha}$
e.g. $10,000 \div 140 = 71$ cows/ha

(1 ha = 10,000 m²)

AREA REQUIRED BY HERD

Total cows \div cows/ha = area required
e.g. $200 \div 71 = 2.8$ ha

BREAK SIZE

Area (m²) \div paddock width = required length for break
e.g. $(2.8 \times 10,000 = 28,000$ m²)$

$28,000 \div 150 \text{ m} = 187 \text{ m}$

Tip:

- A stride is approx. 1 m.

Tip:

Is the pasture requirement for 12 or 24 hours?
dairynz.co.nz

Post-grazing height target