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Executive Summary 

The National Policy Statement for Freshwater Management (NPS-FM) (Ministry for 

Environment, 2017) directs regional councils to develop regional plans for managing 

freshwater resources. Plans must contain freshwater objectives, policies and limits. Objectives 

must express numerically (where practicable) the desired environmental state of water bodies1. 

Polices must describe how the objectives will be achieved and limits must describe restrictions 

to resource-using activities that will allow the objectives to be achieved.  

Water quality objectives for rivers are generally associated directly or indirectly with 

contaminant concentration criteria. Therefore, the development of appropriate objectives and 

limits involves catchment analysis to determine the relationship between contaminant 

discharging activities and instream concentrations. However, concentrations are a complex 

outcome of mixing of multiple sources of contaminants whose individual contributions are 

temporally variable. It is therefore generally more tractable to base catchment analyses on 

loads (i.e., a mass over a period of time such as kg year-1). A challenge then remains of how 

to relate concentration targets to instream catchment loads. 

The purpose of the current project was to develop functional relationships between instream 

loads of the nutrients nitrogen and phosphorus and their corresponding instream 

concentrations. The objective was to define these relationships in such a way that they have 

national coverage and can be applied to any site for which an estimate of either instream load 

or concentration exists.  The modelled relationships were to apply to nutrient variables that are 

relevant to NPS-FM objectives: total nitrogen (TN), total phosphorus (TP), nitrate-nitrogen 

(NO3N) and dissolved reactive phosphorus (DRP).  The models should also be invertible such 

that river loads can be related to concentrations and vice-versa, and model uncertainties 

should be able to be estimated.   

We reviewed a range of alternative modelling approaches that have been employed to 

represent this linkage, ranging from complex physically based models through to simple 

statistical models.  We found that the most complex models were too resource intensive for 

most applications, and even existing studies done within New Zealand were too limited to allow 

for generalisation to the national scale.  Simple national and regional scale approaches to load-

concentration relationships are required to support catchment management, which can 

improve on the pragmatic assumptions that have been made to date in data-scarce 

catchments.  The approach of Oehler and Elliot (2011) and applied in the CLUES model is an 

approach to defining load-concentration relationships (for TN and TP). The approach of Oehler 

and Elliot (2011) was extended by this study to increase the range of nutrient variables covered 

and to increase the representation of New Zealand’s streams and rivers. 

The approach of Oehler and Elliot (2011) defines for any point on a river a value R, which is 

the ratio of median concentration to load (expressed as load normalised by mean flow).  

Because nutrient concentration criteria are not only defined by median concentrations, but also 

sometimes by means or 95th percentiles, we extended R to cover three concentration statistics: 

Rmedian, Rmean and Rp95. 

We collated flow and concentration data for ~600 sites and four nutrient variables (TN, TP, 

DRP and NO3N) and calculated loads, concentration statistics (mean, median and 95th 

percentiles) and subsequently R (Rmedian, Rmean and Rp95).  We used these observed values of 

R to develop three alternative modelling approaches to predict R at any location across the 

 
1  Policy CA2 NPS-FM 
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country.  Therefore, we present 3 (model approaches) x 4 (nutrient variables) x 3 (Rstatistic) = 

36 models within this report. 

Our alternative models for estimating R represent a range of complexity and input data 

requirements.  The simplest model, the ‘global model’ is simply based on the median observed 

values of R.  The ‘catchment characteristics model’ is derived using a random forest model, 

with predictors describing catchment characteristics that have national coverage. The 

predicted values of R can be read from a lookup table for any river segment in New Zealand.  

Finally, the ‘distributional characteristics model’ relies on inputs based on paired observations 

of concentrations and flows at a site. As the input requirements increased, so did the 

confidence in the estimated values of R, which is reflected in reducing prediction uncertainty 

for the estimated values of R. 

We provide a worked example that is linked to an NPS-FM objective for periphyton biomass. 

The example demonstrates how each of the model approaches can be used predict R and 

how this is then used to determine catchment load targets that are constituent with the instream 

concentration criteria associated with the periphyton biomass objective. 
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1 Introduction 

Under the National Policy Statement – Freshwater Management (NPS-FM) regional councils 

are required to set numeric objectives and limits in regional plans. Many objectives are either 

defined by, or linked to, concentrations of nitrogen and phosphorus (hereafter; nutrients). For 

example, objectives for toxicity must be defined in terms of nitrate concentrations and 

objectives for river periphyton biomass must be linked to associated dissolved inorganic 

nitrogen (DIN) and dissolved reactive phosphorus (DRP) concentrations (a mass per volume 

of water such as mg L-1).  

Limits are the management actions that are applied to resource-using activities in a catchment 

in order to achieve the objectives. For objectives associated with nutrients, appropriate actions 

include restricting the intensity of land use on individual land parcels and restricting the amount 

of nutrient that can be discharged from point sources within a catchment. Part of the 

development of appropriate objectives and limits involves catchment analysis to determine the 

relationship between contaminant discharging activities and instream concentrations. 

However, concentrations are a complex outcome of mixing of multiple sources of 

contaminants whose individual contributions are temporally variable. It is therefore generally 

more tractable to base catchment analyses on loads (i.e., a mass over a period of time such 

as kg year-1). Basing catchment analyses on loads is also consistent with the use of budgeting 

models such as OVERSEER, which estimate the contributions of nitrogen and phosphorus 

from individual land parcels in terms of annual loads.  

Although loads are a more appropriate characteristic than concentrations for catchment 

analyses, loads at a site ultimately need to be reconciled with objectives that are expressed 

in terms of concentration criteria. The concentrations that define, or are linked to, freshwater 

objectives are generally a statistic representing something about the distribution of 

concentrations in the receiving environment. Most commonly the statistic represents the 

central tendency of the distribution (i.e., the median or the mean) but it can also represent the 

extremes (e.g., the 95th percentile concentration). There is therefore a need to be able to 

convert a contaminant concentration at a site to an associated load. 

Sometimes it is assumed that a target load can be calculated as the concentration criteria 

multiplied by the mean flow, or alternatively the concentration is the load divided by the mean 

flow (e.g., Norton and Kelly; Roygard and McArthur, 2008). However, the dynamics of 

catchment contaminant concentration dynamics means that this is generally an 

approximation, which may not be appropriate (Oehler and Elliott, 2011). Catchment analyses 

to support objective and limit setting would therefore benefit from models that convert between 

loads and concentrations.   

The aim of this study was to develop model-based tools to convert instream nutrient 

concentrations to instream nutrient loads, and vice-versa. The purpose of these tools is to 

enable the estimation of a nutrient load that is consistent with a nutrient concentration criterion 

or to establish the nutrient concentration that results from a given load at any site in New 

Zealand.  
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2 Background 

2.1 Catchment water quality modelling approaches 

Land-water-nutrient systems are complex and highly variable in space and time (Anastasiadas 

et al., 2013). There are therefore considerable challenges in evaluating the management 

actions that are necessary to achieve targets. Generally, modelling is used to explore the 

outcomes of alternative land and water management scenarios. A series of scenarios is 

generally used to identify a set of interventions that will achieve desired outcomes. Most 

models that are used to represent this problem, can broadly be classed as source-pathway-

receptor models (Holdgate, 1980). 

                  

Figure 1: The source-pathway-receptor framework, with examples relevant to catchment 

water quality management 

The source describes the how and where the nutrients enter the system, e.g., point sources 

(such as wastewater treatment plant or industrial discharges), or diffuse sources (e.g., losses 

from agricultural or forestry land). The pathway describes how nutrients are transported from 

the source to the receptors. The transportation is generally via hydrological flow paths, such 

as infiltration, overland runoff, groundwater movement and conveyance by rivers.  The 

pathway also accounts for transformation, uptake and exchanges of nutrients as they travel 

from source to receptor.  The receptors are the agents that respond to the environmental state 

that results from the transported nutrients.  In a river water quality example, the receptor is 

generally described in terms of a characteristic of the aquatic ecosystem (e.g., the community 

of fish or macroinvertebrate species or the trophic state) or a characteristic of relevance to 

humans (e.g., suitability of water for drinking or recreation).  In most examples of land-water-

nutrient models that are concerned with rivers as the receptor, the environmental state is 

expressed as an instream nutrient concentration and the objective is expressed in terms of 

the receptor’s response to that concentration. For example, objectives for maximal periphyton 

biomass express the trophic response of rives to instream nutrient concentrations.  

Variants of source-pathway-receptor models are related to the representation of the model 

components (e.g., each of the sources, pathways and receptors) and their linkages (i.e., 

transfers, interactions, and coupling), as well as the spatial and temporal discretisation. In the 

literature review that follows, we have explored alternative models and suites of models used 

to relate source loads to instream nutrient concentrations (and vice-versa), and their suitability 

under different application requirements (e.g., data availability, acceptable uncertainties and 

assumptions). 

Source: 

• Point sources, e.g., 

o WWTPs 

o Industry discharge 

• Diffuse sources, e.g., 

o Stock defecation 

o Fertilizer use 

Pathway: 

• Infiltration 

• Runoff 

• Groundwater 

• Rivers  

Receptor: 

• Aquatic 

Environments 

o Eutrophication 

o Species toxicity 

• Humans 

o Drinking water 

supply 
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2.1.1 Statistical Models 

Statistical modelling to directly estimate river water quality (e.g., through regression or 

machine learning techniques) have been successfully used to evaluate water quality in 

unmonitored locations (e.g., Snelder et al., 2017; Unwin et al., 2010).  In order to use this class 

of models to make estimates of changes in water quality, it is necessary to make assumptions 

that trade space-for-time, that is, it is assumed that that the spatial relationships between water 

quality and drivers is similar to what would be seen between water quality and drivers over 

time at a single location (Singh et al., 2011). The predictors in these models are generally not 

refined enough to be able to represent changes in land use (including land use intensity), let 

alone changes in land management or mitigations (hereafter referred to as management 

actions).  Further, the appropriateness of a trading-space-for-time substitution, is highly 

dependent on large training datasets representative of the domain of application. Hence, the 

suitability of statistical modelling in evaluating management actions as part of scenario 

analysis is limited, and statistical modelling approaches are not discussed further in this 

review. 

2.1.2 Distributed physically-based models 

The most detailed approach to evaluating the complex relationships between source loads 

and instream concentration is to use distributed, daily (or sub-daily) time stepping, physically 

based models (herein abbreviated to DPBM).  Examples of this class of model include INCA 

(Wade et al., 2001), SWAT (Gassman et al., 2007) and MIKE SHE (Graham and Butts, 2005). 

The theoretical advantage for these models is that all phases/components of the model are 

represented at a high frequency (e.g., daily, or sub-daily), there is a high spatial discretisation 

and the model components are represented based on assumptions about the physical 

processes that they represent. These models can represent processes at high spatial 

resolution and they are mass conservative; hence they can be used to predict concentrations 

throughout the model domain. However, there are significant challenges with the calibration, 

validation and uncertainty assessment of these type of models (Beven, 1993).  

DPBMs are generally used in case study specific locations, where large amounts of data are 

available for parameterisation and validation, and when considerable financial resources and 

technical expertise can be invested for the modelling process. This class of models is generally 

not suitable for regional analysis, or for studies in data-poor catchments. Further, because 

their application even within one catchment is expensive (in terms of time, money and data), 

the ability to extrapolate outcomes from a small number of specific case studies that can afford 

this level of modelling, is limited.  Applications of MIKE-SHE and SWAT in the New Zealand 

context have encountered difficulties with calibration and validation of the water quality 

predictions (Durney et al., 2016; Fenemor, 2013). 

Where data and time do not allow the development of DPBMs, alternatives are employed that 

compromise in terms of spatial and temporal resolution and process representation, for all, or 

components of water quality catchment models. Anastasiadas et al. (2013) provide a useful 

summary of water quality models (for predicting loads) used within the New Zealand context, 

categorising them based on the processes and time and space scales that they represent. In 

New Zealand, agricultural nutrient sources are commonly represented using the OVERSEER 

model. Overseer provides farm-scale nutrient budgeting and loss estimation of nitrogen and 

phosphorus on an annual steady state basis (Roberts and Watkins, 2014; Shepherd and 

Wheeler, 2013; Shepherd et al., 2013; Wheeler et al., 2014). OVERSEER has been developed 

within New Zealand, specifically to represent local climate, soil, and farming systems and 

practices.  Farmers can use OVERSEER to help with effective on-farm nutrient management 
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(to optimise profitability and production) and many regional councils are now moving towards 

requiring farms to develop nutrient budgets using OVERSEER for regulatory purposes and/or 

using OVERSEER to support plan development (Baker-Galloway, 2013; Upton, 2018). As 

such, OVERSEER is increasingly being used to estimate farm scale nutrient leaching for use 

within many water quality management applications.  

In a recent application with the Ruamahanga catchment (Greater Wellington), OVERSEER 

was used to estimate steady state nutrient losses (as average loads per year) and these were 

coupled with daily time stepping groundwater and surface water models (Blyth, 2018; Blyth et 

al., 2018). This was achieved by determining effective concentrations for baseflows and runoff 

flows (based on surface and groundwater flows from hydrological models and the OVERSEER 

annual loads, to ensure mass balance).  This allowed the annual steady state load to be 

distributed across time, and hence produce daily timeseries of instream nutrient 

concentrations. This approach assumes that variability in concentrations with time is only 

dependent on hydrology, and is not due to intra-annual variability in on-farm nutrient 

inputs/outputs. The source concentrations were further adjusted during the calibration 

process. The predicted instream nutrient concentrations were compared with nutrient targets 

to assess whether water quality objectives would be achieved under different scenarios. While 

the model was found to perform well in terms of predictions of instream concentrations 

following calibration (Blyth et al., 2018), the collaborative modelling process (surface water, 

groundwater, nutrients etc) was a multi-year project and resource and data intensive. We were 

unable to assess the accuracy of the predicted relationships between source load reduction 

and corresponding reductions in instream concentrations based on the outputs as presented 

in (Blyth, 2018; Blyth et al., 2018), as this was not part of their modelling objective and was 

not documented. 

2.1.3 Hybrid models 

Another class of catchment models operate on an average annual load basis. In this type of 

approach explicit functions are required to relate the average annual loads to the instream 

concentration statistic that is of interest.  The CLUES model is a widely used spatially 

distributed model for estimating annual steady state loads (Elliott et al., 2016), and has been 

used across New Zealand to evaluate catchment loads of TN and TP (e.g., Palliser et al., 

2015; Semadeni-Davies et al., 2015; Semadeni-Davies and Sunil Kachhara, 2017).  CLUES 

comprises a series of component models, OVERSEER and SPASMO for modelling nutrient 

sources and SPARROW for transmission and instream processes (pathway).  The linked 

models generate load estimates. The loads are then converted into instream median 

concentrations (indicators for receptors) using explicit functions derived from regressions on 

catchment characteristics (described in Oehler and Elliott, 2011). 

2.1.4 Pragmatic solutions 

In many examples in New Zealand catchment management, pragmatic assumptions are made 

regarding the changes in load required to meet target nutrient concentrations. For example, a 

target load for the catchment may be estimated by taking the target concentration (typically 

expressed as a median concentration) and multiplying by a mean average flow .e.g., (Norton 

and Kelly; Roygard and McArthur, 2008; Scott, 2013). Comparing this target load to the 

“observed” load then suggests a target nutrient load reduction.  If attenuation and other 

nutrient losses during transmission are represented by a linear transfer function, it follows that 

the required percentage reduction in instream load can be achieved by an equivalent reduction 

in source loads. The required source load reductions must take into account the load 
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contributions from non-manageable sources such as loads from naturally vegetated areas and 

atmospheric deposition, which cannot be reduced.  

While practical, the above approach to calculating a target loads is likely to produce erroneous 

results because the relationship between concentration and load is complicated due to 

catchment contaminant concentration dynamics (Oehler and Elliott, 2011). For example, 

estimating the load required to achieve a median concentration criteria as the criteria multiplied 

by the mean flow will often under-estimate the required load and lead to an overestimate in 

the required source load reduction. 

2.1.5 Previous approaches to spatial modelling of load-concentration relationships 

There is limited literature concerning approaches to develop explicit functions to describe the 

relationship between river loads and instream concentrations; studies either adopt a 

catchment by catchment based approach (i.e., distributed integrated catchment modelling) to 

directly estimate instream concentrations, or alternatively, particularly in data-sparse or low 

pressure catchments, work with the very simplified representations. The most significant piece 

of research, particularly in a New Zealand context, examining these relationships is the work 

by Oehler and Elliott, (2011), as applied in the CLUES model. In the following section we will 

explore the detail of that study. 

The regression relationships derived by Oehler and Elliott, (2011), describe a scalar (R) to 

convert yearly flow-weighted concentrations (Cfw = mean annual load/mean annual flow) to 

median concentration:   

𝐶𝑚𝑒𝑑𝑖𝑎𝑛 = 𝐶𝑓𝑤 × 𝑅        (Equation 1) 

Based on 72 sites with 20 years of monthly monitoring data from the National River Water 

Quality monitoring Network (NRWQN) (NIWA, 2009), Oehler and Elliott (2011), showed that 

R is spatially variable and varies with nutrient species (Figure 2). Oehler and Elliott (2011) 

developed models describing the spatial variation in R for TN and TP across New Zealand, 

based on a national database of catchment characteristics (e.g., REC, LCDB2, FWENZ). The 

regression relationships were modelled using a machine learning approach (Boosted 

Regression Trees; BRT). For comparative purposes, Oehler and Elliot (2011) also developed 

BRT models of Cmedian with loads as one of the predictors (“direct” models). The “direct” models 

generally yielded a poorer model fit compared to the estimates to Cmedian following equation 

(1) with the BRT models of R.  The authors also noted that the “direct” models were less useful 

for generalisation and application to scenario analysis, as they were dependent on land cover. 
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(a)  (b)  

Figure 2: (a) Boxplot of measured R. The boxes show quartiles and the whiskers show 1.5 

times the inter-quartile range, and circles are outlier candidates. (b) Cross-validation 

performance of the Ratio Model for summer TN Cmedian. (from Oehler and Elliott, 2011) 

Oehler and Elliott, (2011) found that the scalar, R, was mostly less than one (i.e., flow weighted 

concentrations were greater than median concentrations, Figure 2). Hydrological predictions 

(e.g., variables describing mean flows, flood flows and yields) explained around 1/3 of the 

variability in R. Catchment characteristics relating to sediment sources and transport were 

also important.  Model performance (in terms of estimates of concentration) was good for TN 

(Figure 2Error! Reference source not found., r2 = 0.78), but slightly poorer for TP (r2 = 0.56). 

Characteristics relating to land use were not included in the model, which simplifies the use of 

the relationships in scenario analysis, if it is assumed that R does not change under land 

management/land use change scenarios. This approach provides a simple approximation of 

the relationship between loads and concentrations, particularly for catchments with limited 

water quality monitoring data.   

2.1.6 Summary 

The purpose of the current project is to develop functional relationships between river loads 

and instream concentrations.  The objective is to define these relationships in such a way that 

they have national coverage and can be applied to any site for which an estimate of either 

instream loads or concentrations exists.  In addition, the relationships should be structured so 

that they can be used to investigate various catchment scenarios (e.g., the implementation of 

mitigations). The model's relationships should cover constituent water quality species relevant 

to NPS-FM objectives: TN, TP, DRP and NO3N.  The models should also be invertible such 

that river loads can be related to concentrations and vice-versa, and model uncertainties 

should be able to be estimated.   

With these objectives in mind, we concluded that investigating approaches using DBPMs was 

not appropriate for our application given that (1) these models are extremely resource 

intensive even for a single site/catchment application, let alone the number that would be 

required to be able to provide sufficient information to generalise the results nationally and (2) 

the performance of this class of models for water quality is often quite poor, primarily due to 

challenges associated with calibration.  We also consider that collating outputs from various 

sources (e.g., detailed modelling studies from across the country) to examine load-

concentration relationships would also be hampered by the differentiating between differences 
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related to difference in modelling approaches and time periods, and those due to differences 

between the load-concentration relationships. 

Simple national and regional scale approaches to load-concentration relationships are 

required to support catchment management, which can improve on the pragmatic 

assumptions that have been made to date in data-scarce catchments.  The approach of Oehler 

and Elliott (2011) and applied in the CLUES model is a more rigorous approach to defining 

load-concentration relationships, however it can be improved in terms of constituent species 

covered, and the representation of New Zealand’s stream and rivers. 

2.2 Estimating loads given a concentration target 

The method we have employed in this study follows a similar approach to Oehler and Elliott, 

(2011), but builds on that earlier work by: (1) incorporating more data; (2) incorporating 

updated knowledge about load estimation procedures; (3) including models for both NO3N and 

DRP; and (4) calculating R values that also relate to the mean and 95th percentile 

concentrations.  

In practice, we have a concentration target specified as a median, mean or 95th percentile. We 

want to know the load that corresponds to the target. The underlying assumption is that there 

is a relationship between a concentration statistic and load at a site that is constant such that 

a change in the load will result in a change in the concertation as presented in equation (1) 

and generalised below in equation 1a 

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

𝐶𝐹𝑊
       Equation 1a 

where 𝐶𝐹𝑊 =  𝐿
𝑄⁄  is the flow weighted concentration, L is the mean annual load, Q is the 

mean flow, and CStatistic can be the concentration target defined by a median, mean or 95th 

percentile concentration. Then at a site with a defined concentration target, the load can be 

estimated if the associated value 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is known as follows:  

𝐿𝑜𝑎𝑑 =  
𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐×𝑄

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
       Equation 2 

Conversely, at a site with a modelled load, the associated instream concentrations can be 

estimated as follows: 

𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
𝐿𝑜𝑎𝑑×𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

𝑄
      Equation 3 

Our objective was to estimate the value of 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 at any location. This study has developed 

three methods to estimate the value of 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐.which we refer to as the global model, the 

catchment characteristic model and the distributional characteristic model. 

The following sections detail the data and methods used to determine the observed 

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐values at any site and the development of the three types of models that can be used 

to predict 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐. 

3 Data 

3.1 Water quality data 

This study was based on a national water quality dataset (1000+ sites) compiled for recent 

national environmental monitoring (Larned et al., 2018). The water quality data consisted of 
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measurements from river monitoring sites associated with regional council state of 

environment (SOE) monitoring networks and the National River Water Quality Network 

(NRWQN).  Figure 3 provides a summary of the start years, end year and the total number of 

observation years for the complete dataset, for the variables included in this study.  The total 

number of sites used in our study is slightly smaller than represented by Figure 3 due to 

filtering to meet minimum data requirements. However, the data represents a much larger 

number of sites for developing R values than that used by Oehler and Elliot (2011), whose 

relationships were derived based on the 72 NRWQN sites. 

 

Figure 3: Summary of start years, end years and total number of observation years for the 

complete water quality data set 

3.2 Flow data 

The calculation of loads requires that water quality observations are associated with the flow 

at the time of sampling, and preferably that there is also a continuous timeseries of daily flow 

at the site. In this study, flow estimates for each monitoring site were based on measured or 

modelled daily mean flow. For monitoring sites with flow recorders on the same reach, daily 

mean flows were calculated from measured flow (approximately 32% of sites had observed 

flow data). However, most river monitoring sites are not associated with a flow recorder, and 

daily mean flows for these sites were estimated by hydrological modelling. We used predicted 

flows from the Larned et al. (2018), which were derived from the TopNet hydrological model, 

corrected using flow-duration curves, which were in turn estimated with random forest models 

(Booker and Snelder, 2012a; Booker and Woods, 2014). TopNet is a spatially distributed time-

stepping model that combines water-balance models with a kinematic wave channel-routing 

algorithm (McMillan et al., 2013). 

3.3 Spatial framework  

The spatial framework for the analysis was a GIS-based digital drainage network comprising 

rivers and catchment boundaries that is the basis for the River Environment Classification 

(REC; Snelder and Biggs, 2002). We used the digital drainage network from version 2 of the 

REC (REC2). The digital network was derived from 1:50,000 scale contour maps; it represents 

New Zealand’s rivers as 590,000 segments (delineated by upstream and downstream 

confluences), each of which is associated with a sub-catchment. All observation sites were 

associated with a “nzsegment” value, which is a unique identifier for the segments of the REC2 

digital river network.   

3.4 Site metadata 

Following the approach of Oelher and Elliot (2011) we postulated that variation in the 

relationship between the load and the concentration across sites might be at least partly 

explained by differences in catchment characteristics.  To explore this hypothesis, we 
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compiled a dataset of site attributes for all monitoring sites in the study. We categorised these 

as “catchment characteristics” and “land use intensity data”.  These data represent updates to 

the explanatory variables used by Oehler and Elliot (2011). Firstly, we use updated land cover 

data (we use LCDB3 rather than LCDB2) and secondly we incorporated land use intensity 

data based on animal stock density data, which were not available until recently. 

3.4.1 Catchment characteristics 

The digital drainage network is linked to a database describing a wide range of descriptors of 

the individual network segments (Wild et al., 2005). We used several catchment 

characteristics as predictors in our models (Table 1). Catchment topography was derived from 

a digital elevation model. Catchment climate characteristics were derived from climate station 

data as described by (Wild et al., 2005). Catchment land cover descriptors were derived from 

the national Land Cover Database-3 (LCDB3) which differentiates 33 categories based on 

analysis of satellite imagery from 2008 (lris.scinfo.org.nz). Descriptions of catchment regolith 

are derived from the Land Resources Inventory (LRI) including interpretations of the LRI 

categories made by Leathwick et al (2003). Descriptions of catchment hydrology were derived 

from national-scale hydrological modelling (e.g., Booker and Snelder, 2012b).  
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Table 1: Table of catchment characteristic predictors used in spatial models. 

Predictor Abbreviation Description Unit 

Geography and 
topography 

usArea Catchment area m2 

usLake Proportion of upstream catchment occupied by lakes % 

usElev Catchment mean elevation m ASL 

usSlope Catchment mean slope degrees 

segAveElev Segment mean elevation degrees 

Climate  usAvTWarm Catchment averaged summer air temperature degrees C x 10 

usAvTCold Catchment averaged winter air temperature degrees C x 10 

usAnRainVar Catchment average coefficient of variation of annual rainfall mm y-1r 

usRainDays10 Catchment average frequency of rainfall > 10 mm days month-1 

usRainDays20 Catchment average frequency of rainfall > 20 mm days month-1 

usRainDays100 Catchment average frequency of rainfall > 100 mm days month-1 

segAveTCold Segment mean minimum winter air temperature degrees C x 10 

Hydrology MeanFlow Estimated mean flow m3 s-1 

nNeg Mean number of days per year on which flow was less than 
that of the previous day 

Year-1 

MAHF30 Mean annual 30-day high flow divided by the mean flow Unitless 

Lcv L-moments coefficient of variation Unitless 

Reversal Number of negative and positive changes in water conditions 

from one day to the next 

Year-1 

MALF30 Mean annual 30-day low flow divided by the mean flow Unitless 

MALF7 Mean annual 7-day low flow divided by the mean flow Unitless 

FRE3 Mean number of events per year that exceeded three times the 
long-term median flow 

Year-1 

JulFlow Mean daily flow for July divided by the mean daily flow Unitless 

FloodFlow Log10 mean annual 1-day maximum flow divided by the mean 
daily flow. 

Unitless 

Geology* usHard Catchment average induration or hardness value Ordinal* 

usPhos Catchment average phosphorous Ordinal* 

usParticleSize Catchment average particle size Ordinal* 

usCalcium Catchment average calcium  

Land cover uslntensiveAg Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, orchard, 
vineyard and other perennial crops (LCDB3 classes 40, 30, 33) 

Proportion 

usIndigForest Proportion of catchment occupied by indigenous forest (LCDB3 
class 69) 

Proportion 

usUrban Proportion of catchment occupied by built-up area, urban 
parkland, surface mine, dump and transport infrastructure 
(LCDB3 classes 1,2,6,5) 

Proportion 

usScrub Proportion of catchment occupied by scrub and shrub land 
cover (LCDB3 classes 50, 51, 52, 54, 55, 56, 58) 

Proportion 

usWetland Proportion of catchment occupied by lake and pond, river and 
estuarine open water (LCDB3 classes 20, 21, 22) 

Proportion 

usBare Proportion of catchment occupied by bare ground (LCDB3 
classes 10, 11, 12,13,14, 15) 

Proportion 

usExoticForest Proportion of catchment occupied by exotic forest (LCDB3 
class 71) 

Proportion 
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3.4.2 Land use intensity data 

Previous spatial modelling has used the proportion of catchment occupied by pasture as a 

predictor of water quality (e.g., Snelder et al., 2018a; Unwin et al., 2010). This is justified by 

the strong relationship between the proportion of catchment occupied by pasture and 

observed variation in water quality between monitoring sites (Julian et al., 2017; Larned et al., 

2016). The area of pasture has not varied substantially in most catchments in New Zealand 

over the past 30 years (Julian et al., 2017). However, the density and types of livestock on 

pasture land over much of the country currently vary considerably and have changed in that 

period (MFE and StatsNZ, 2019). Therefore, predictions of current water quality are likely to 

be better informed by indicators of land use intensity, (e.g., measuring inputs such as fertilizer, 

cultivation frequency), carrying rates (i.e., numbers of livestock) or production such as crop 

yields, milk solids.   

Data describing land use inputs (e.g., fertilizer, cultivation frequency) and production (e.g., 

crop yields, milk solids) at the extent of the entire country are not available in New Zealand. 

However, data describing stocking rates (i.e., numbers of livestock), derived from the annual 

agricultural production census (APC), have recently been made available by Statistics New 

Zealand at a level of resolution that is appropriate to the analyses undertaken by this study. 

We used the APC data to derive indicators of the intensity of pastoral agriculture by combining 

spatial data describing the type of land cover (i.e., grazed grassland and plantation forest, 

from LUCAS; Newsome et al. 2018) with data describing the number and types of livestock. 

Details of the procedure used to derive these statistics are provided in Appendix A. 

The resulting dataset described the stock unit density in total (i.e., all stock types) and by stock 

type for the catchment of every segment of the river network and the proportion catchment 

occupied by plantation forest for the latest version of LUCAS.  

Table 2. Land use intensity predictor variables used in spatial models. 

Land use 

intensity 

predictor 

Description Unit 

SUTotal Stock unit density for all stock types in 2017 (i.e., total stock units) SU ha-1 

SUDairy Proportion of total stock unit density attributable to dairy cows in 2017 Unitless 

SUBeef Proportion of total stock unit density attributable to beef cows in 2017 Unitless 

SUSheep Proportion of total stock unit density attributable to sheep in 2017 Unitless 

SUDeer Proportion of total stock unit density attributable to deer in 2017 Unitless 

pForest Proportion of upstream catchment area in forestry Unitless 
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4 Methods 

4.1 Overview  

The methodology that follows describes the various steps conducted to take the raw input data 

described in the previous section through to the development of three alternative models of 

Rstatistic.  These steps are demonstrated schematically in Figure 4. 

 

Figure 4: Process diagram indicating the methodological steps required to go from raw input 

data through to development of alternative models or R. Blue arrows indicate inputs required 

for prediction in the models of R.  Pink arrows indicate inputs only required for the 

development of the models of R.  Green arrows indicate other process steps performed in 

this study. 

4.2 Concentration statistics 

In order to evaluate Rstatistic at any given site, it was first necessary to evaluate the 

concentration statistic of interest (mean, median and 95th percentile) from the observed water 

quality data.  We followed procedures that are consistent with those used in national 

environmental reporting of river water quality state (e.g. Larned et al., 2015, 2018). These 

methods are outlined below. 

4.2.1 Time period and filtering rules for analysis of concentration statistics  

The statistical robustness with which concentration statistics can be determined depends on 

the variability in the measurements between sampling occasions and the number of 
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observations. As a general rule, there are diminishing returns on increasing sample size with 

respect to confidence for sample sizes greater than 30 (McBride, 2005). 

In this study, a period of five years represented a reasonable trade-off for most of the targets 

because it yielded a sample size that was 30 or more for many sites and nutrient variable 

combinations, and typically 60 samples based on monthly sampling. We used a five-year 

period for the analysis of concentration statistics (Jan 2013 – Dec 2017) as it is consistent with 

the periods used in previous national water-quality state analyses (e.g., Larned et al. 2015, 

Larned et al. 2019). Because water quality data tends to be seasonal, it is also important that 

each season is well-represented over the period of record. In New Zealand, monthly 

monitoring is generally undertaken at SOE sites and seasons are therefore defined by months. 

We therefore applied a rule that restricted site × nutrient variable combinations in the 

concentration statistic analyses to those with measurements for at least 90% of the sampling 

intervals in that period (at least 54 of 60 months). Site × nutrient variable combinations that 

did not comply with these rules were excluded from the analysis. 

4.2.2 Censored values in concentration observations 

Censored values were replaced by imputation for the purposes of calculating the concentration 

statistics. Left censored values (values below the detection limit(s)) were replaced with 

imputed values generated using ROS (Regression on Order Statistics; Helsel, 2012), following 

the procedure described in Larned et al. (2015). The ROS procedure produces estimated 

values for the censored data that are consistent with the distribution of the uncensored values, 

and it can accommodate multiple censoring limits. Censored values above the detection limit 

were replaced with values estimated using a procedure based on “survival analysis” (Helsel, 

2012). A parametric distribution is fitted to the uncensored observations and then values for 

the censored observations are estimated by randomly sampling values larger than the 

censored values from the distribution. The survival analysis requires a minimum number of 

observations for the distribution to be fitted; hence where fewer than 24 total observations 

existed, censored values above the detection limit were replaced with 1.1 times the detection 

limit. Sites with greater than 15% of observations that were censored were excluded from the 

study. This restriction reduced the influence on the imputed values on the concentration 

statistics, and also reduce the influence on censored values in the fitting of rating curves for 

the load calculations (see section 4.3). 

4.2.3 Calculation of concentration statistics and confidence intervals 

For each monitoring site and nutrient variable, we calculated the concentration statistic using 

the mean and percentiles (50th and 95th) derived from the distribution of observed values for 

the period 2013 to 2017 (inclusive). All percentiles were calculated using the Hazen method.2  

As water quality concentrations tend to be log-normally distributed, we have calculated the 

95% confidence interval of the mean using the Cox method for log-normally distributed data 

(Olsson, 2005), given by: 

𝐶𝐼 = 𝐶̅ +
𝑆2

2
± 𝑧√

𝑆2

𝑛
+

𝑆4

2(𝑛−1)
      (Equation 4) 

 
2 (http://www.mfe.govt.nz/publications/water/microbiological-quality-jun03/hazen-calculator.html) Note that there 

are many possible ways to calculate percentiles. The Hazen method produces middle-of-the-road results 

(McBride 2005). 

http://www.mfe.govt.nz/publications/water/microbiological-quality-jun03/hazen-calculator.html
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The confidence interval of the percentiles was evaluated using the R package jmuOutlier, and 

the function quantileCI, which produces exact confidence intervals on quantiles corresponding 

to the stated probabilities, based on the binomial test. 

4.3 Load calculations 

The second component required to calculate Rstatistic is an estimate of the flow weighted 

concentration (Cfw), which is the load divided by the mean flow.  Mean flows were estimated 

from the data described in section 3.2, preferentially using observed flows, and when these 

were not available deferring to modelled flows. The following section describes the 

methodology employed to estimate at site loads. 

We used rating curve methods to calculate loads that comprised two steps: (1) the generation 

of a series of flow and concentration pairs representing ‘unit loads’ and (2) the summation of 

the unit loads over time to obtain the total load. In practice step 1 precedes step two but in the 

explanation that follows, we describe step 2 first.  

If flow and concentration observations were available for each day, the load would be the 

summation of the daily flows multiplied by their corresponding concentrations: 

𝐿 =
𝐾

𝑁
 ∑ 𝐶𝑗𝑄𝑗

𝑁
𝑗=1         (Equation 5) 

where L: mean annual load expressed as an annual load (kg yr-1), ha, K: units conversion 

factor (31.6 kg s mg-1 yr-1), 𝐶𝑗: contaminant concentration for each day in period of record (mg 

m-3), 𝑄𝑗: daily mean flow for each day in period of record (m3 s-1), and N: number of days in 

period of record. Censored values are included in the assessment at their face value. 

In this summation, the individual products represent unit loads. Because concentration data 

are generally only available for infrequent days (i.e., generally in this study, monthly 

observations), unit loads can be only be calculated for these days. However, flow is generally 

observed continuously, or the distribution of flows can be estimated for locations without 

continuous flow data, and there are often relationships between concentration and flow, time 

and/or season. Rating curves exploit these relationships by deriving a relationship between 

the sampled nutrient concentrations (ci) and simultaneous observations of flow (qi). Depending 

on the approach, relationships between concentration and time and season may be included 

in the rating curve. This rating curve is then used to generate a series of flow and concentration 

pairs (i.e., to represent Qj  and Cj in equation 5) for each day of the entire sampling period (i.e., 

step 1 of the calculation method; Cohn et al., 1989). The estimated flow and concentration 

pairs are then multiplied to estimate unit loads, and these are then summed to estimate mean 

annual loads (i.e., step 2 of the calculation method; Equation 5).   

There are a variety of rating curve calculation methods that combine infrequently observed 

concentration data and flow information to estimate daily contaminant concentrations at a site. 

These concentrations can then be used in equation 5 to calculate site contaminant loads. 

Identifying the most appropriate rating curve calculation method and approximations to use 

when daily concentration are not available requires careful inspection of the available data for 

any given nutrient variable and site.   

In this study, loads were calculated by (1) identifying the best rating curve method for each 

site (through manual inspection of all possible rating curves for each site), (2) calculating loads 

using daily flow time series (either observed or modelled, as described in section 3.2.   
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We used all available flow-concentration observations at each site in order to characterize the 

rating curves and made load estimates for a prediction year of 2015 (the middle of the time 

period that concentration statistics were calculated over). Setting temporal terms to the middle 

date of the state time period (for those models that use time variable components), allows 

trends and seasonality to be accounted for. 

Sites were excluded from the analysis where they did not meet the following load calculation 

criteria:  

1. Observations in at least 8 years in the most recent 10 years;  

2. 60 total observations; 

3. At least 80% of all quarters in the most recent 10 years.  

 

Table 3 provides a summary of the total number of sites available for this analysis, and the 

numbers that met the load (described above) and state (described in section 4.2.1) filtering 

requirements. 

Table 3: Summary of number of sites used in this study following application of filtering rules. 

Nutrient 
Variable 

Total number of 
sites with Q and C 

data 

Sites that meet 
load filtering rules 

Sites that meet 
state filtering 

rules 

Sites that meet 
all filtering rules 

DRP 1033 782 740 520 

NO3N 1034 762 743 641 

TN 996 679 678 584 

TP 992 673 679 553 

 

We expressed all nutrient loads as flow weighted concentrations, CFW (i.e. mg L-1) by dividing 

the annual load by the mean flow (m3s-1) and applying appropriate units conversion. Details of 

the alternative load calculation methods are provided in the following sections. 

4.3.1 Load calculation methods 

4.3.1.1 L7 model 

Two regression model approaches to defining rating curves of (Cohn et al., 1989, 1992) and 

(Cohn, 2005) are commonly used to calculated loads. The regression models relate the log of 

concentration to the sum of three explanatory variables: discharge, time, and season. The L7 

model is based on seven fitted parameters given by: 

𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑖) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2

+ 𝛽4(𝑡𝑖 − 𝑇̅)

+ 𝛽5(𝑡𝑖 − 𝑇̅)2 + 𝛽6𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽7𝑐𝑜𝑠(2𝜋𝑡𝑖) 

(Equation 6) 

where, i is the index for the concentration observations,  𝛽1,2,..7: regression coefficients, 𝑡𝑖: time 

in decimal years, 𝑇̅: mean value of time in decimal years, (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅  mean of the natural log of 

discharge on the sampled days, and 𝐶𝑖̂: is the estimated ith concentration. 

The coefficients are estimated from the sample data by linear regression, and when the 

resulting fitted model is significant (p < 0.05), it is then used to estimate the concentration on 
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each day in the sample period, 𝑙𝑛(𝐶𝑗̂). The resulting estimates of 𝑙𝑛(𝐶𝑗̂) are back-transformed 

(by exponentiation) to concentration units. Because the models are fitted to the log 

transformed concentrations the back-transformed predictions were corrected for 

retransformation bias. We used the smearing estimate (Duan, 1983) as a correction factor (S):  

𝑆 =  
1

𝑛
∑ 𝑒𝜀𝑖̂𝑛

𝑖=1         (Equation 7)  

where, 𝜀̂ are the residuals of the regression models, and n is the number of flow-concentration 

observations. The smearing estimate assumes that the residuals are homoscedastic and 

therefore the correction factor is applicable over the full range of the predictions. 

The average annual load is then calculated by combining the flow and estimated concentration 

time series:  

𝐿 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁
𝑗=1         (Equation 5a) 

If the fitted model is not significant, 𝐶𝑗̂  is replaced by the mean concentration and S is unity.   

To provide an estimate of the load at a specific date, (i.e. test = 1/3/2004) a transformation is 

performed so that the year components of all dates (tj) are shifted such that all transformed 

dates lie within a one-year period centred on the proposed observation date (i.e. Y=1/9/2003 

to 31/8/2004).  For example, flow at time t=13/6/2007 would have a new date of Y =13/6/2004, 

and a flow at time t=12/11/1998 would have a new date of Y=12/11/2003.  

𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝛽3 [𝑙𝑛(𝑞𝑗) − (𝑙𝑛(𝑞))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

2
+ 𝛽4(𝑌𝑗 − 𝑇̅)

+ 𝛽5(𝑌𝑗 − 𝑇̅)
2

+ 𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) 

(Equation 6a) 

where 𝐶𝑗
𝑌̂ is the estimated jth concentration for the estimation year, and Yj is the transformed 

date of the ith observation, and all other variables are as per equation 6. We use this approach 

to estimate loads for the analysis that are representative of the middle of the state time period 

(i.e. the full calendar year of 2015).  The regression coefficients (𝛽1,2,..7) are those derived from 

fitting equation 6 to the observation dataset.  It follows that the estimated load for the year of 

interest can be calculated by:   

𝐿𝑌 =
𝐾𝑆

𝑁
 ∑ 𝐶̂𝑗

𝑌𝑄𝑗
𝑁
𝑗=1        (Equation 5b) 

4.3.1.2 L5 Model 

The L5 model is the same as L7 model except that two quadratic terms are eliminated:  

𝑙𝑛(𝐶𝑖̂) =  𝛽1 +  𝛽2(𝑙𝑛(𝑞𝑖)) + 𝛽3(𝑡𝑖) + 𝛽4𝑠𝑖𝑛(2𝜋𝑡𝑖) + 𝛽5𝑐𝑜𝑠(2𝜋𝑡𝑖) (Equation 8) 

The five parameters are estimated, and loads are calculated in the same manner as the L7 

model.  Following the approach outlined for the L7 model, the L5 model can be adjusted when 

used for prediction to provide estimates for a selected load estimation date: 

𝑙𝑛 (𝐶𝑗
𝑌̂) =  𝛽1 +  𝛽2[𝑙𝑛(𝑞𝑗)] + +𝛽4(𝑌𝑗 − 𝑇̅) + +𝛽6𝑠𝑖𝑛(2𝜋𝑌𝑗) + 𝛽7𝑐𝑜𝑠(2𝜋𝑌𝑗) (Equation 8a) 
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4.3.1.3 Flow stratification  

Roygard et al. (2012) employed a flow stratification approach to defining rating curves. This 

approach is based on a non-parametric rating curve, which is defined by evaluating the mean 

concentration within equal increments of the flow probability distribution (flow ‘bins’).  In their 

application, Roygard et al. (2012) employed ten equal time-based categories (flow decile bins), 

defined using flow distribution statistics and then calculated mean concentrations within each 

bin. This non-parametric rating curve can then be used to estimate nutrient concentrations, 𝐶̂, 

for all days with flow observations. At step 2, the load is calculated following equation (5a), 

providing an estimate of average annual load over the observation time period. 

𝐿 =
𝐾

𝑁
 ∑ 𝐶̂𝑗𝑄𝑗

𝑁
𝑗=1       ````  (Equation 5c) 

where 𝐶𝑗̂ is calculated mean concentration associated with the flow quantile bin of the flow Qj., 

and all other variables are as per equation 5. 

4.3.1.4 Flow stratification with trend 

We have also included a modified version of the flow stratification method to account for trends 

in water quality.  This is useful in the instance that loads are required to be estimate for a 

particular point in time, rather than as an average over the complete observation period, 

particularly when there are strong trend evident.   We detrended the observation data by fitting 

equation 9 to the concentration time series. 

𝑙𝑛(𝐶𝑖̂) =  𝛽1 + 𝛽2(𝑡𝑖) (Equation 9) 

The form of equation 9 follows that used to represent trends in the L5 model. We then use the 

concentration residuals to develop a non-parametric rating curve following the method 

described in 4.3.1.3.  𝐶𝑗̂ is calculated as the mean residual concentration associated with the 

flow quantile bin of the flow Qj., plus the predicted value of concentration from equation 6 at 

time Tj.which is multiplied by the smearing coefficient to account for the log transformation of 

equation 9. 

4.3.2 Precision of load estimates 

The statistical precision of a sample statistic, in this study the mean annual load, is the amount 

by which it can be expected to fluctuate from the population parameter it is estimating due to 

sample error. In this study, the precision represents the repeatability of the estimated load if it 

was re-estimated using the same method under the same conditions. Precision is 

characterised by the standard deviation of the sample statistic, commonly referred to as the 

standard error. We evaluated the standard error of each load estimate by bootstrap resampling 

(Efron, 1981). For each load estimate we constructed 100 resamples of the concentration data 

(of equal size to the observed dataset), each of which was obtained by random sampling with 

replacement from the original dataset. Using each of these datasets, we recalculated the site 

load and estimated the 95% confidence intervals, using the boot r package.  We represent 

precision in the results as the 95% confidence interval range, standardised by the load 

estimate (i.e., represented as a proportion). 

4.3.3 Selection of best load estimation methodology 

Loads were calculated for all site and nutrient variable combinations using each of the four 

load estimation methods. All load estimates were converted to flow weighted concentrations 

(by dividing by the long term mean flow) and were then combined with observed median 
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concentrations to calculate Rmedian as the ratio of the Cmedian to CFW (Equation 1a) for each 

nutrient variable, site and method. We evaluated the performance of each rating curve method 

for predicting observed concentrations, using a range of model performance measures (details 

are in section 4.6).  We identified site and nutrient variable combinations that had any of: 

1. Rmedian values <0.1 or Rmedain values >1.2; 

2. Large Cfw values (values varied by nutrient variable); 

3. Large differences in the loads calculated using different methods. 

For these site and nutrient variable combinations (approximately 10-20% of sites for each 

nutrient variable), we manually inspected diagnostic plots (e.g. C-Q plots, C-T plots, 

comparisons of sampled flow distributions relative to observed flow distributions) We used 

expert judgement to select the most appropriate load estimation methodology for each site 

and variable that were outside of the three criteria outlined above. As well as selecting from 

one of the four rating curve methods described above, we also allowed sites to be discarded 

at this stage if no method appeared to satisfactorily describe the observed behaviour.  This 

process also suggested that, for the manually inspected sites, the selection of the model with 

the lowest RMSD (in terms of performance in predicting observed concentrations) was the 

criteria most consistent with the outcomes of the expert judgement.  As such, for the remainder 

of the site and nutrient variable combinations that were not flagged by the abovementioned 

criteria (and were therefore not individually inspected), the most appropriate load estimation 

method was selected as the rating curve method that yielded the lowest RMSD. 

4.4 Observation of R at monitoring sites  

We calculated R at each monitoring site as the ratio of Cstatistic to Cfw (Equation 1a).  We 

combined the uncertainties of Cstatistic and Cfw to estimate the uncertainty of the observed R.  

We estimated the confidence intervals for R (as proportions), by adding the confidence 

intervals as proportions for each of the concentration statistic and the flow weighted 

concentration.  Because the confidence intervals were estimated non-parametrically they are 

not necessarily symmetric, therefore the upper and lower confidence intervals were calculated 

independently, (and converted back into absolute values rather than proportions) using the 

following equations: 

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝐿𝐶𝐼 = 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (1 − (
𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐−𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝐿𝐶𝐼

𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
+

𝐶𝐹𝑊 𝑈𝐶𝐼−𝐶𝐹𝑊

𝐶𝐹𝑊
))  (Equation 10) 

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑖𝑡𝑐 𝑈𝐶𝐼 = 𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (1 + (
𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 𝑈𝐶𝐼−𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

𝐶𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
+

𝐶𝐹𝑊 −𝐶𝐹𝑊 𝑈𝐶𝐼

𝐶𝐹𝑊
))  (Equation 11) 

The confidence intervals for Rstatistic are primarily used for plotting purposes and to provide a 

qualitative evaluation of the reliability of the estimates of R, which has implications for 

subsequent reliability of the models developed for R. This approach is likely to provide 

pessimistic uncertainty ranges, as we might expect the Cstatistic and Cfw errors to covary. 

4.5 Predictions of R  

We modelled and made predictions of R using three alternative approaches: a global model, 

a catchment characteristics model and a distributional characteristics model.  These models 

represent a spectrum of complexity and user data requirements (as summarised in Table 4).   
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Table 4: User data requirements for alternative models of R 

Model Name Data Requirements for prediction of R 

Global None 

Catchment characteristics Database of R (predictions made by this study); available for all 
REC2 segments across NZ 

Distributional characteristics Paired observations of concentration (C) and discharge (Q) that 
meet filtering requirements set out in section 4.3 and 4.2. At least 10 
years of continuous flow data (or appropriate estimates of the 
required flow distributional parameters from a reliable source). 

 

4.5.1 Global model 

The first model is the simplest and assumes that Rstatistic is a global constant for each nutrient 

variable.  Rstatistic is estimated as the median of the observed values of Rstatistic.  To provide 

estimates of model error that are more representative of expected errors for sites not included 

in fitting the data, we performed a 10-fold cross-validation procedure, whereby for each fold, 

10% of the data were randomly excluded and the estimate of Rstatistic at the excluded sites was 

the median of Rstatistic for the remaining 90% of sites.  

4.5.2 Catchment characteristics model 

We fitted Rstatistic for each nutrient variable derived for each monitoring site to a suite of 

predictor variables using random forest (RF) models (Breiman, 2001; Cutler et al., 2007).  

These predictors represented values that were available for all segments of the digital river 

network and did not include any predictors that would rely on more detailed information about 

the specific flow or concentration relationships at a site. Details of RF models and how they 

were applied in this study are provided by (Snelder et al., 2018; Whitehead, 2018).  

RF models include any of the original set of predictor variables that are chosen during the 

model fitting process. However, marginally important predictor variables may be redundant 

(i.e., their removal does not affect model performance) and their inclusion complicates model 

interpretation. We used a backward elimination procedure to remove redundant predictors 

from the initial ‘saturated’ models (i.e., models that included any of the original predictor 

variables). The procedure first assesses the model mean square error (MSE) using a 10-fold 

cross validation process. The predictions made to the hold-out observations during cross 

validation are used to estimate the MSE and its standard error. The model’s least important 

predictor variables are then removed in order, with the MSE and its standard error being 

assessed for each successive model. The final, ‘reduced’ model is defined by the “one 

standard error rule” as the model with the fewest predictor variables whose MSE is within one 

standard error of the best model (where the best model is the model with the lowest cross 

validated MSE) (Breiman et al., 1984). The standard error of MSE is the standard deviation of 

MSE values calculated for each of the hold-out observations (i.e., the cross validation folds). 

Importance levels for predictor variables were not recalculated at each reduction step to avoid 

over-fitting (Svetnik et al., 2004). 

All calculations were performed in the R statistical computing environment (R Development 

Core Team 2009) using the randomForest package and other specialised packages. (Here R 

refers to the software, rather than the ratio R). 
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4.5.2.1 Modelled relationships 

Unlike linear models, RF models cannot be expressed as equations. However, the 

relationships between predictor and response variables represented by RF models can be 

represented by importance measures and partial dependence plots (Breiman, 2001; Cutler et 

al., 2007). During the fitting process, RF model predictions are made for each tree for 

observations that were excluded from the bootstrap sample; these excluded observations are 

known as out-of-bag (OOB) observations. To assess the importance of a specific predictor 

variable, the values of the response variable are randomly permuted for the OOB 

observations, and predictions are obtained from the tree for these modified data. The 

importance of the predictor variable is indicated by the degree to which prediction accuracy 

decreases when the response variable is randomly permuted. Importance is defined in this 

study as the loss in model performance (i.e., the increase in the mean square error; MSE) 

when predictions are made based on the permuted OOB observations compared to those 

based on the original observations. The differences in MSE between trees fitted with the 

original and permuted observations are averaged over all trees and normalized by the 

standard deviation of the differences (Cutler et al., 2007).  

A partial dependence plot is a graphical representation of the marginal effect of a predictor 

variable on the response variable, when the values of all other predictor variables are held 

constant (Cutler et al., 2007). The benefit of holding the other predictors constant (generally 

at their respective mean values) is that the partial dependence plot effectively ignores their 

influence on the response variables. Partial dependence plots do not perfectly represent the 

effects of each predictor variable, particularly if predictor variables are highly correlated or 

strongly interacting, but they do provide an approximation of the modelled predictor-response 

relationships that are useful for model interpretation (Cutler et al., 2007) 

We approximated the direction of the influence of each predictor by the sign of a linear 

regression through the partial dependence plots. We used heat plots to graphically display the 

relative contributions and direction of influence of each of the predictors. In these plots, the 

intensity of the colour is a measure of the importance, and the direction of influence is indicated 

by the colour; red indicates that increasing values of the predictor corresponds to degrading 

concentration statistic/load and green indicates that increasing values of the predictor 

correspond to improving concentration statistic/load). 

4.5.2.2 Model predictions 

Predictions are made with RF models by “running” new cases (i.e., sites that were not part of 

the training data) down every tree in the fitted forest and averaging the predictions made by 

each tree (Cutler et al., 2007).  The output is a database of predictions of R associated with 

each individual segment of the digital river network. 

4.5.3 Distributional characteristics model 

The distributional characteristics model is a linear regression model for which the predictor 

variables are various statistics derived from the observations of flow and concentration (the 

distributional characteristics), including statistics for the flow, concentration and joint flow-

concentration distribution Table 5.  In most cases where there is sufficient data to estimate R 

using the distributional characteristics model, there will also be sufficient data to estimate R 

directly (i.e. by calculating the loads and then dividing the observed concentrations by the 

load). However, there may be occasions where loads cannot be estimated due to insufficient 

data, and in these cases the distributional characteristics model may be useful.  More 
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importantly, we considered the distributional characteristics model might provide some 

insights into the mechanisms that cause spatial variation in R. 

The concentration and joint concentration-flow characteristics only use the data from the 5 

year period over which the concentration statistics were calculated, and flow quantiles used 

to characterise the join C:Q distribution are derived from the paired C:Q observations (not the 

continuous flow record).  The characteristics of the flow distribution were derived from the 

complete flow timeseries. We considered the use of other statistics but found that these were 

largely highly correlated with the chosen predictors.  Table 5 provides a summary of the 

predictors used in the distributional characteristics model. 

Table 5: Summary of predictors used in the distributional characteristics model 

Predictor Name Description Units 

WQ_sd Standard deviation of the concentration observations mg L-1 

WQ_cv Coefficient of variation of the concentration observations - 

CQ9050 Ratio of the median concentration associated with flows 

between the 80:100th flow quantiles (“90”) to the median 

concentration associated with flows between the 40:60th flow 

quantiles (“50”).   

- 

CQ9010 Ratio of the median concentration associated with flows 

between the 80:100th flow quantiles (“90”) to the median 

concentration associated with flows between the 0:20th flow 

quantiles (“10”). 

- 

CT_Slope_Std Coefficient β2 from the regression: ln(C)~β1+β2(T), standardised 

by dividing by the mean concentration 

C – mg L-1 

T - days 

Q_cv Coefficient of variation of the continuous flow record - 

MeanFlow Mean Flow m3s-1 

 

After visual inspection of scatter plots of R versus the predictor variables, we chose to log10 

transform the predictors to linearise these relationships. As CT_Slope_Std includes both 

positive and negative values, this variable was transformed by taking the square root of the 

absolute value, then assigning the sign of the original value (this is represented as the function 

F(x) in the equation below). 

The distributional characteristics model takes the form of: 

𝑅𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝛽1 + 𝛽2 log10(𝑊𝑄𝑠𝑑) + 𝛽3 log10(𝑊𝑄𝑐𝑣) + 𝛽4 log10(𝐶𝑄9050) + 𝛽5 log10(𝐶𝑄9010) +

𝛽6 F(𝐶𝑇𝑆𝑙𝑜𝑝𝑒𝑆𝑡𝑑
) + 𝛽7 log10(𝑄𝑐𝑣) + 𝛽8 log10(𝑀𝑒𝑎𝑛𝐹𝑙𝑜𝑤)  (Equation 12) 

Where 𝛽1, 𝛽2…, 𝛽8 are the fitted coefficients. The coefficients of equation 12 were determined 

through least squares regression employing a stepwise model building process to fit the most 

parsimonious model starting with all the explanatory variables. The Akaike information 

criterion (AIC; Akaike 1973) was used to apply a penalised log-likelihood method to evaluate 
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the trade-off between the degrees of freedom and fit of the model as explanatory variables 

were added or removed (Crawley, 2002). The procedure identified the preferred model as that 

with the lowest AIC value.  We performed a 10-fold cross validation procedure to provide more 

representative estimates of model error for predictions at new sites (i.e., sites that were not 

part of the training data). 

4.5.3.1 Modelled Relationships 

We repeated the regression with all predictor variables standardised such that they have 

means of zero and standard deviations of one.  In doing this, the magnitude and sign of the 

regression coefficients can be used to interpret the relationships between the response (R for 

each nutrient variable) and each of the predictor variables (Saltelli et al., 2008). 

4.6 Model performance 

Model performance was assessed by comparing observations with independent predictions 

(i.e., sites that were not used in fitting the model), which were obtained from either from the 

10-fold cross validation process for the linear regression models, or from the OOB 

observations for the Random Forest models. We summarised the model performance using 

seven statistics; regression R2; Nash-Sutcliffe efficiency (NSE); percent bias (PBIAS) the 

relative root mean square deviation (RSR); the root mean square deviation (RMSD); the 

median absolute error (MAE); and the relative median absolute error (RMAE).   

The regression R2 value is the coefficient of determination derived from a regression of the 

observations against the predictions. The R2 value indicates how much of the variation in the 

observed values is explained by the variation in the predicted values, but is not a complete 

description of model performance (Piñeiro et al., 2008).  

NSE indicates how closely the observations coincide with predictions (Nash and Sutcliffe, 

1970). NSE values range from −∞ to 1. A NSE of 1 corresponds to a perfect match between 

predictions and the observations. An NSE of 0 indicates the model is only as accurate as the 

mean of the observed data and values less than 0 indicate the model predictions are less 

accurate than using the mean of the observed data.  

Bias measures the average tendency of the predicted values to be larger or smaller than the 

observed values. Optimal bias is zero, positive values indicate underestimation bias and 

negative values indicate overestimation bias (Piñeiro et al., 2008). PBIAS is computed as the 

sum of the differences between the observations and predictions divided by the sum of the 

observations (Moriasi et al., 2007).  

RSR is a measure of the characteristic model uncertainty. It is estimated as the square root of 

the mean squared deviation of predicted values with respect to the observed values (the root 

mean square deviation), divided by the standard deviation of the observations (Moriasi et al., 

2015). 

The normalization associated with PBIAS and RSR allowed the performance of models to be 

compared across all nutrient variables. Model predictions were evaluated to be very good, 

good, satisfactory or unsatisfactory based on the criteria (for nutrient modelling) proposed by 

Moriasi et al.,(2015), outlined in Table 6.  
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Table 6: Performance ratings for statistics used in this study, from (Moriasi et al., 2015). 

Performance Rating R2 NSE PBIAS 

Very good R2  ≥ 0.70 NSE > 0.65 |PBIAS| <15 

Good 0.60 < R2 ≤ 0.70 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 20 

Satisfactory 0.30 < R2 ≤ 0.60 0.35 < NSE ≤ 0.50 20 ≤ |PBIAS| < 30 

Unsatisfactory R2 < 0.30 NSE ≤ 0.35 |PBIAS| ≥ 30 

 

RMSD is a measure of the characteristic model statistical error or uncertainty. RMSD is the 

square root of the mean squared deviation of predicted values with respect to the observed 

values (distinct from the standard error of the regression model). We used RMSD to evaluate 

the confidence intervals of the predictions.  

MAE is the median absolute error.  It is similar to the RMSD, but is more robust to outliers, so 

potentially can provide a more appropriate estimation of the typical model errors, if the number 

of outliers are small. RMAE is the normalised median absolute error: MAE divided by the 

standard deviation of the observations. 

4.7 Evaluating differences in model performance 

In order to evaluate the difference in the model performance we tabulated the RMSD and 

RMAE for each combination of model, statistic and nutrient variable.  To determine the 

statistical significance of these differences we calculated the residuals for each model and 

then compared the variances of the residual distributions between all pairs of models using 

the F-test (which is a test for equality of variances).   

  



 

 Page 32 of 73 

5 Results 

5.1 Concentrations 

The distributions of the three site concentration statistics (mean, median and 95th percentile) 

were approximately log-normally distributed (Figure 5). Maps of the concentration statistics 

are provided in Appendix B. 

 

Figure 5: Histograms of observed concentration statistics (mean, median and 95th 

percentile) derived for the monitoring sites, by nutrient variable. Note, x-axis is a log scale. 

The red lines indicate the median of the site statistics. 

5.2 Estimated loads 

Table 6 shows a summary of the number of sites for which each of the alternative load 

calculation methods described in the methods was selected as most appropriate.  In general, 

the L5 model was most frequently selected. However, for TP, the flow stratification method 

with trends (FST) method was judged to be most appropriate more often than the L5 method. 

The reflects the tendency for TP flow-concentration observations to be erratic compared to 

the patterns observed for the nitrogen species. A small (1-3%) number of sites were excluded 

from the analysis at this stage because either none of the methods could adequately represent 

the observations, or, upon inspection the load estimates were considered to be unreliable. 
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Figure 6: Table summarising number and percentages (in brackets) of sites for which each 

of the alternative load calculation methods were used. “No model” indicates sites that were 

not assigned a rating curve methodology and were discarded from the analysis. 

Nutrient 
variable 

L7 L5 FS FST No model 

DRP 124 (17%) 234 (32%) 26 (4%) 345 (47%) 6 (1%) 

NO3N 31 (4%) 250 (34%) 59 (8%) 387 (53%) 7 (1%) 

TN 37 (6%) 234 (35%) 33 (5%) 361 (54%) 4 (1%) 

TP 63 (9%) 318 (47%) 41 (6%) 243 (36%) 5 (1%) 

 

Figure 7 shows histograms of the calculated loads for all sites.  Loads are demonstrated as 

both flow weighted concentrations (CFW mg L-1) as well as export coefficients (loads 

standardised by catchment area, kg ha-1 yr-1).  All subsequent analyses and results represent 

loads as flow weighted concentrations. However, we have included export coefficients in 

Figure 7 (as well as a comparison of the relationship between flow CFW and the export 

coefficients), as a comparison point for readers who may not be familiar with typical values for 

flow weighted concentrations.  Loads were approximately log-normally distributed. Maps of 

calculated loads are provided in Appendix C. 

 

Figure 7: Histograms of loads as load per unit area and flow weighted concentrations.  The 

third row shows a comparison of the loads of the two alternative units. 
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5.3 Observed R 

The majority of observed R values at monitoring sites were less than one when the 

concentration statistic was either the median or the mean for all nutrient variables (Figure 8). 

This indicates that loads would generally be under-estimated if the simple assumption was 

made that these can be calculated by multiplying the statistic (i.e., mean or median 

concentration) by the mean flow. When the statistic type was the 95th percentile, R values had 

the reverse pattern (i.e., most observed R values were greater than one).  

The uncertainty of the observed R values were least for Rmedian and greatest for Rp95 (Figure 

9). As a measure of relative uncertainty, we compared the median of the difference between 

the upper and lower confidence intervals at each site against the interquartile range (ICR) of 

the observed values of R (Table 7). The typical uncertainties were 1.3,1.7 and 3.1 x ICR for 

Rmedian, Rmean and Rp95. In other words, the average uncertainty at a site was larger than the 

average difference in R between sites for all statistics. The generally higher uncertainties for 

Rmean and Rp95 compared to Rmedian are associated with the large uncertainty of the estimates 

of these statistics from five years of monthly data.  

Site values of R were spatially variable for all nutrient variables (Figure 10, Figure 11, Figure 

12). Some spatial patterns were evident in the mapped R values. For example, sites with high 

values of R for all nutrient variables were clustered in the central North Island and tended to 

occur on mainstems of larger rivers. Sites with low values of R for all nutrient variables tended 

to occur on the eastern coasts of both the North and South Islands.  

 

Figure 8: Histograms of observed R values (mean, median and p95) at the monitoring sites. 

Site median values of R are indicated by the red line. The blue dashed line indicates 

an R value of 1 to provide a reference point: values of R greater than one indicate that 

the concentration statistic is greater than the flow weighted concentration. 
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Figure 9: Cumulative distribution plots of R , including 95% confidence intervals (green 

lines).  Red lines indicate the median value of R and blue lines are at unity, for comparison. 

 

Table 7 Summary of relative uncertainties, as the ratio of the median difference between the 

upper and lower confidence intervals, standardised by the interquartile range: 

Nutrient variable Rmedian Rmean Rp95 

DRP 1.26 1.18 1.78 

NO3N 1.19 2.08 1.90 

TN 1.03 1.05 2.50 

TP 0.92 1.28 2.40 
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Figure 10: Maps showing observed values of Rmean at monitoring sites.  
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Figure 11: Maps showing observed values of Rmedian at monitoring sites. 



 

 Page 38 of 73 

 

Figure 12: Maps showing observed values of Rp95 at monitoring sites.  (Note, the colour 

scale has been stopped at 4, but there are a small number of sites with values greater than 

this). 
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5.4 Global model 

The global models for R (Rmean, Rmedian and Rp95) are simply the median of the observed site R 

values, as demonstrated by red lines in in Figure 8. Performance statistics for these models 

are provided in Table 8. Note that some performance statistics are excluded from Table 8 (R2, 

NSE and RSR), because these values tend to towards, 0, 0 and 1 as is the case for a model 

that is based on the mean and that has normally distributed residuals.  Because our median 

estimates were not strongly dissimilar from the mean values, and the distributions are not 

highly skewed, there was little variance in these performance measures, and they all 

approached the previously described limits. 

Table 8. Performance of the global models of R (for mean, median or p95). Performance 

was determined using independent predictions (i.e., sites that were not used in fitting the 

models) generated from the cross-validated predictions of R. PBIAS = percent bias, RMSD = 

root mean square deviation, RMAE = relative median absolute error, MAE = median 

absolute error. 

R Nutrient variable PBIAS RMSD RMAE MAE 

R
m

e
a

n
 

DRP 1.17 0.30 0.49 0.15 

NO3N 0.28 0.23 0.76 0.17 

TN 0.44 0.18 0.70 0.13 

TP -1.67 0.30 0.63 0.19 

R
m

e
d

ia
n
 

DRP -2.76 0.24 0.68 0.16 

NO3N -2.13 0.29 0.76 0.22 

TN -0.36 0.20 0.73 0.15 

TP -0.30 0.28 0.77 0.21 

R
p
9
5
 

DRP 14.86 1.31 0.23 0.29 

NO3N 6.45 0.47 0.52 0.24 

TN 6.15 0.39 0.46 0.18 

TP 10.28 0.86 0.47 0.40 
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5.5 Catchment characteristics model 

5.5.1 Model performance 

The performance of the catchment characteristics models of R (mean, median and p95) are 

summarised in Figure 13 and Table 9. According to the performance criteria outlined in section 

4.6, only the model for TP Rmedian had a satisfactory performance; all other models were 

classed as “unsatisfactory”.  Nevertheless, the models were generally unbiased, and in terms 

of characteristic errors (RMSD), the catchment characteristics model was approximately 20% 

better than the global models for Rmean and Rmedian and on average 5% better than the global 

model for Rp95. 

 

Figure 13: Scatter plots of the predicted R (mean, medians and p95) from the catchment 

characteristics model versus observed R (C/CFW). Red line shows 1:1 line as a comparison 

point.  Green lines indicate the 95% confidence intervals of both observations and 

predictions.  
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Table 9. Performance of the catchment characteristics model of R (mean, median or p95). 

Performance was determined using independent predictions (i.e., sites that were not used in 

fitting the models) generated from the out-of-bag observations of R. R2 = coefficient of 

determination of observation versus predictions, NSE = Nash-Sutcliffe efficiency, PBIAS = 

percent bias, RSR = relative root mean square error, RMSD = root mean square deviation, 

RMAE = relative median absolute error, MAE = median absolute error. 

 Nutrient 

variable 

R2 NSE PBIAS RSR RMSD RMAE MAE 

R
m

e
a

n
 

DRP 0.14 0.12 -0.67 0.94 0.283 0.39 0.12 

NO3N 0.33 0.33 -0.03 0.82 0.188 0.48 0.11 

TN 0.35 0.35 -0.02 0.81 0.143 0.44 0.08 

TP 0.37 0.37 -0.67 0.79 0.232 0.39 0.12 

R
m

e
d

ia
n
 

DRP 0.32 0.32 0.47 0.82 0.195 0.49 0.12 

NO3N 0.40 0.40 -0.16 0.77 0.222 0.51 0.15 

TN 0.37 0.36 0.00 0.80 0.161 0.47 0.10 

TP 0.58 0.58 -0.47 0.65 0.178 0.39 0.11 

R
p
9
5
 

DRP 0.06 -0.03 -3.03 1.01 1.315 0.26 0.33 

NO3N 0.18 0.17 -1.00 0.91 0.419 0.47 0.21 

TN 0.22 0.22 -0.28 0.88 0.326 0.47 0.18 

TP 0.10 0.08 -2.03 0.96 0.806 0.55 0.46 

 

5.5.2 Modelled relationships 

Figure 14 demonstrates the relative importance and direction of influence of predictors on the 

modelled response (i.e., Rstatistic) fitted by the RF models.  For Rmean and Rmedian hydrological 

characteristics were important, with increasing R values associated with increasing baseflow 

contributions (MALF7 and MALF30) and decreasing R values with higher degrees of 

hydrological “flashiness” (i.e., FRE3 and JulFloodFlow).   



 

 Page 42 of 73 

 

Figure 14: Importance of predictors included in the ‘reduced’ random forest Rstatistic models.  

The colours indicate the importance and direction of influence of each predictor on the 

modelled Rstatistic predictions.  Red indicates increasing predictor magnitudes are associated 

with increasing Rstatistic, whereas green indicates increasing predictor magnitudes are 

associated with decreasing Rstatistic.  Blank cells indicate that the predictor was not included 

in the ‘reduced’ random forest model. 
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5.5.3 Model predictions 

We used the catchment characteristics models to make predictions of R for the whole country 

(Figure 15, Figure 16, Figure 17).  Patterns in the value of R are evident in these maps; notably 

high R values in the central North Island and on the Canterbury plains, and low R values 

associated with lower altitude areas for NO3N. In addition, R varies strongly between rivers 

with catchments that are dominated by mountain, hill and lowland topography, particularly for 

TN and TP.  
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Figure 15: Maps of predicted Rmean values from catchment characteristics model.  Maps 

show all rivers from order 1 and above. 
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Figure 16: Maps of predicted Rmedian values from catchment characteristics model.  Maps 

show all rivers from order 1 and above. 
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Figure 17: Maps of predicted Rp95 values from catchment characteristics model. Maps show 

all rivers from order 1 and above. 
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5.6 Distributional characteristics model 

5.6.1 Model predictors 

The values of each of the seven predictor variables that were used as predictors in the 

distributional characteristics model are mapped in Figure 18. These predictors describe 

characteristics of flow, concentration and their individual and joint distributions. 

 

Figure 18: Maps of the predictors used in the distributional characteristics model. 

5.6.2 Model performance 

The performance of the distributional characteristics model is summarised in Figure 19 and 

Table 10.  There were four models that was determined to be “very good” (TN, NO3N and TP 

Rmedian and TN Rmean) and one to be “good” (NO3N and TN Rmean).  Three models were 

satisfactory (DRP Rmedian and TP and DRP Rmean) . All models for Rp95 were classified as 

“unsatisfactory”.  All models were an improvement on both the global and catchment 

characteristics models in terms of characteristic errors (i.e., RMSD and MAE). 
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Figure 19: Scatter plots of the predicted R (mean, median or p95) from the distributional 

characteristics model versus observed R (C/CFW).  Red line shows 1:1 line as a comparison 

point.  Green lines indicate the 95% confidence intervals of the observations and predictions 

(based on prediction +/- 1.96xRMSD).  
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Table 10. Performance of the catchment characteristics model of R (mean, median or p95).   

Performance was determined using independent predictions (i.e., sites that were not used in 

fitting the models) generated from the cross-validation procedure. R2 = coefficient of 

determination of observation versus predictions, NSE = Nash-Sutcliffe efficiency, PBIAS = 

percent bias, RSR = relative root mean square error, RMSD = root mean square deviation, 

MAE = median absolute error. 

 Nutrient 

variable 

R2 NSE PBIAS RSR RMSD RMAE MAE 

R
m

e
a

n
 

DRP 0.41 0.41 -0.43 0.77 0.232 0.30 0.09 

NO3N 0.63 0.63 0.30 0.61 0.142 0.38 0.09 

TN 0.71 0.71 0.02 0.54 0.101 0.30 0.05 

TP 0.53 0.53 0.04 0.69 0.205 0.37 0.11 

R
m

e
d

ia
n
 

DRP 0.57 0.57 0.29 0.66 0.160 0.40 0.10 

NO3N 0.79 0.79 0.73 0.46 0.134 0.29 0.08 

TN 0.79 0.79 0.07 0.46 0.096 0.28 0.06 

TP 0.80 0.80 0.53 0.45 0.127 0.27 0.08 

R
p
9
5
 

DRP 0.16 0.15 -0.98 0.92 1.143 0.25 0.32 

NO3N 0.11 0.11 0.66 0.94 0.432 0.51 0.23 

TN 0.22 0.22 -0.26 0.88 0.351 0.50 0.19 

TP 0.11 0.10 -0.62 0.95 0.782 0.55 0.46 

 

5.6.3 Modelled relationships 

Figure 20 presents a summary of the direaction and magnitude of influence of the predictors 

on the response of Rstatistic by nutrient variable.  The bar chart shows the magnitude and 

direction of the regression coefficients for Rstaistic when the predictors have been standardised 

to have mean of zero and variance of one.  By doing this, the regression coefficients can be 

interpreted as the relative sensitivity of the response (i.e. Rstatistic) to each of the predictors.  

When the regression coefficients are negative, this indicates that Rstatistic decreases as the 

predictor variable increases, and when they are positive, Rstatistic increases as the predictor 

variable increases. 

For Rmean the most sensitive predictor variable is CQ9010.  This predictor describes the overall 

steepness of the C-Q rating curve. For all nutrient variables, Rmean decreases as CQ9010 

increases.  Large values of CQ9010 are associated with sites where most of the load is 

associated with high flows.  Rmedian also has a strong dependency on CQ9010, although for 

the nitrogen variables, particularly NO3N, CQ9050 also plays an important role in defining R.  

CQ9050 help to distinguish those sites where the concentration data indicates dilution occurs 

at high flows.  When CQ9050 is smaller, this can indicate that dilution is occurring at higher 

flows, and this is associated with larger values of Rmedian.  The coefficient of variation of the 

concentrations (WQ_cv) is also important for both Rmedian and Rp95, although the directions of 

the influence differ: increasing WQ_cv is associated with decreasing Rmedian, and increasing 

Rp95.  This indicates that as the WQ_cv increases, the component of load associated with high 

flows generally increases (in most cases concentration increases with flow) and the 95th 

percentile value also increases, whereas the median concentration is not strongly correlated 
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with WQ_cv.  Hence for Rmedian, increasing WQ_cv leads to an increase in the denominator of 

equation 1a, and a corresponding reduction in Rmedian. Whereas, for Rp95, WQ_cv influences 

both the numerator and denominator, and for highly skewed distributions, this tends to lead to 

increases in Rp95 with increases in WQ_cv. 

 

Figure 20: Summary of sensitivity of R to distributional characteristics model predictors. Note 

sensitivities are based on regression coefficients using variables that have been transformed 

and standardised as described in the text. 

 

5.7 Summary of model coefficients 

Table 11 and Table 12 summarise the model parameters for the global model (i.e. the median 

of R values, as used in equation 1a) and the distributional characteristics model (to use in 

equation 12 and subsequently equation 1a). Values of R (Rmean, Rmedian and Rp95) for each 

nutrient variable are available as a table of predictions from the RF model associated with 

every segment of the digital river network. The 95% confidence intervals for the estimates of 

R (from any one of the three methods) can obtained as R ±1.96 x the model characteristic 

error (as defined by the RMSD in Table 13).  This approach is relatively coarse, yet simple to 

apply.  For the random forest models prediction errors could potentially be derived that varied 

spatially, but this is beyond the scope of this piece of work. 

Table 11: Summary of the Global model prediction of Rstatistic 

Nutrient variable Rmean Rmedian Rp95 

DRP 0.882 0.785 1.529 

NO3N 0.721 0.633 1.449 

TN 0.764 0.683 1.371 

TP 0.732 0.517 1.596 
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Table 12: Summary of regression coefficient (β1,2,..8 for equation 12) for the distributional 

characteristics model 

  β1 β2 β3 β4 β5 β6 β 7 β8 
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DRP 0.955 NA NA -0.192 -0.551 NA NA 0.468 

NO3N 0.845 -0.019 -0.141 -0.163 -0.166 -0.096 NA 0.629 

TN 0.945 0.061 -0.093 -0.284 -0.367 -0.159 NA 0.744 

TP 0.957 0.056 -0.162 -0.238 -0.339 -0.171 -0.040 0.319 

R
m

e
d

ia
n

 

DRP 0.768 NA -0.342 -0.344 -0.324 NA NA 0.216 

NO3N 0.745 NA -0.346 -0.334 -0.144 -0.055 NA 0.816 

TN 0.820 0.072 -0.274 -0.491 -0.264 -0.142 NA 0.737 

TP 0.745 0.051 -0.481 -0.308 -0.179 -0.129 -0.030 0.219 

R
p
9
5

 

DRP 2.490 0.258 0.860 NA -1.292 NA 0.096 1.133 

NO3N 1.617 -0.189 0.595 NA -0.149 NA NA 1.063 

TN 1.789 NA 0.606 NA -0.625 NA NA 1.858 

TP 2.217 0.267 NA 0.949 -1.339 NA NA NA 
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5.8 Comparison of performance of the different models 

The characteristic errors of all models, represented by the RMSD and RMAE, are show in 

Table 13.  For all statistic and nutrient variable combinations, the global model had the largest 

RMSD and the distributional characteristics model had the lowest RMSD. To determine 

whether these differences were statistically significant, we compared the residuals of each 

pair of models using the F-test, which compares the variances of the two distributions.  For all 

possible pairs, we found p-values <0.01, indicating that there were statistically significant 

differences between the variances. The pattern of highest to lowest characteristic error 

associated with the global, catchment characteristic and distributional characteristics models 

was observed also for the RMAE statistic.  We note that the RMAE is lower for some of the 

Rp95 models.  This is largely due to the more skewed distributions of Rp95 (Figure 9), which 

does not strongly influence the magnitude of the MAE, but does lead to larger RMSD values 

and standard deviations (which were used to standardise the MAE and RMSD values to define 

their relative versions). 

Table 13:Summary table of RMSD and RMAE values for alternative models of R. Colour 

scales are unique to each performance measure and indicate worst performance (red) to 

best performance (green). 
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DRP 0.3 0.28 0.23 0.49 0.39 0.3

NO3N 0.23 0.19 0.14 0.76 0.48 0.38

TN 0.18 0.14 0.10 0.7 0.44 0.3

TP 0.3 0.23 0.21 0.63 0.39 0.37

DRP 0.24 0.20 0.16 0.68 0.49 0.4

NO3N 0.29 0.22 0.13 0.76 0.51 0.29

TN 0.2 0.16 0.10 0.73 0.47 0.28

TP 0.28 0.18 0.13 0.77 0.39 0.27

DRP 1.31 1.32 1.14 0.23 0.26 0.25

NO3N 0.47 0.42 0.43 0.52 0.47 0.51

TN 0.39 0.33 0.35 0.46 0.47 0.5

TP 0.86 0.81 0.78 0.47 0.55 0.55

R
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Nutrient variable

RMSD RMAE
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5.9 Example information 

In this section we present a worked example for a case study site.  We consider nutrient 

concentration criteria for TN and DRP to achieve a periphyton biomass objective and derive 

target loads to achieve these criteria. The nutrient concentration criteria used are defined by 

Snelder et al. (2019). These criteria differ depending on the REC Source-of-flow class of the 

target sites. This example is based on site EW-00060 which belongs to the “Cool-Wet Lowland 

(CWL)” Source-of-flow class. We chose nutrient concentration criteria to achieve the 

periphyton biomass threshold of 200 mg chlorophyll m-2 with a spatial exceedance criteria of 

20% (see Snelder et al. (2019) for details). Table 14 summarises the concentration criteria 

and current concentrations (both expressed as median concentrations).  

Target loads to achieve these criteria will be derived as flow weighted concentrations (CFW), 

following equation 2. The current values of CFW for the site, calculated as part of this study, 

are included in Table 14 for reference, but it is noted that this information may not necessarily 

be available in a typical application. 

Table 14: Concentration criteria and observed median concentrations and loads (as CFW) 

for both TN and DRP at the case study site.  

Nutrient 
variable 

Concentration criteria 
Ccriteria 

(mg L-1) 

Current Median 
Concentration, Cmedian  

(mg L-1) 

Current CFW (mg L-1)  

(95% C.I. in brackets) 

DRP 0.0691 0.09 0.089 (0.088-0.092) 

TN 0.351 2.115 2.39 (2.30-2.49) 

 

For the same site, we also present the method to estimate median concentrations (and their 

uncertainties) given an estimated site load (expressed as a flow weighted concentration), 

using equation 3. For the example we convert the current CFW to a median concentration using 

the estimates of R and compare against the observed current median concentration.   

5.10 Estimates of R using models 

For each model we evaluated R for the site and estimated the uncertainty as the 

R±1.96xRMSD.  For cases where the lower confidence interval of R<0, we recommend using 

the smaller of half the estimated R value, or the minimum observed R value from the testing 

dataset (Table 15). 

Table 15: Minimum observed R values by statistic type and nutrient variables 

Nutrient Variable Rmean Rmedian Rp95 

DRP 0.16 0.13 0.26 

NO3N 0.13 0.01 0.45 

TN 0.29 0.18 0.55 

TP 0.11 0.01 0.25 
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5.10.1 Global model 

Predictions from the global model of Rmedian for the example site are taken from Table 11, and 

uncertainties for these predictions are estimated based on the RMSD values summarised in 

Table 13. 

Table 16: Estimates of Rmedian from the global model for the case study site, including 

uncertainties. 

Nutrient variable Rmedian 95% Confidence intervals 

DRP 0.79 0.31 - 1.26 

TN 0.68 0.29 - 1.07 

5.10.2 Catchment characteristics model 

Predictions of Rmedian for the case study site are taken from lookup tables for all segments 

(outputs from the random forest models), and uncertainties for these predictions are estimated 

based on the RMSD values summarised in Table 13. 

Table 17: Estimates of Rmedian from the catchment characteristics model for the case study 

site, including uncertainties 

Nutrient variable Rmedian 95% Confidence intervals 

DRP 0.96 0.59 - 1.33 

TN 0.89 0.59 - 1.20 

5.10.3 Distributional characteristics model 

In order to use the distributional characteristics models, paired C-Q observations and statistics 

derived from the long-term distribution of flows at the site.  This information is summarised for 

the case study site in Figure 21, Figure 22 and Figure 23.  The inputs required for the model 

regression equations are shown in Table 18, which, when combined with the regression 

coefficients in Table 12, can be used to derive the predictions of Rmedian, presented in Table 

19. Uncertainties for these predictions are estimated based on the RMSD values summarised 

in Table 13. 
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Figure 21: Histogram of flow at the case study site. The red line indicates the mean flow and 

the blue dashed lines are plus and minus one standard deviation from the mean. 

 

 

Figure 22: Histogram of concentrations at the case study site. The red line indicates the 

mean concentration and the blue dashed lines are plus and minus one standard deviation 

from the mean. 

 

 

Figure 23: Joint flow-concentration relationship at the case study site. The orange dashed 

lines indicate the 0,20,40,60,80, and 100% quantiles of flow.  The solid horizontal lines show 

the median concentrations associated with the three flow quantile ranges used to develop 

the ratios CQ9010, and CQ9050. 
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Table 18: Summary of input variables for the distributional characteristics models of R for the 

case study site. Values of the input variables are shown in their original units, as well as 

following transformation for use in equation 12. 

 DRP TN 

Predictor 

Name 

Value Transformed 

value 

Value Transformed value 

WQ_sd 0.015 -1.823 0.506 -.295 

WQ_cv 0.165 -0.780 0.225 -.648 

CQ9050 0.868 -0.061 1.487 0.172 

CQ9010 0.888 -0.052 1.553 0.191 

CT_Slope_Std -3 e-4 -0.017 1.2e-04 0.011 

Q_cv 0.476 -0.322 0.476 -0.322 

MeanFlow 7.682 0.886 7.682 0.886 

 

Table 19:Estimates of Rmedian from the distributional characteristics model for the case study 

site, including uncertainties. 

Nutrient variable Rmedian 95% Confidence intervals 

DRP 0.99 0.68 – 1.30 

TN 0.97 0.78 - 1.15 

 

5.11 Estimates of CFW and required reductions in loads 

The estimates of Rmedian and CFW (i.e., the target load associated with the nutrient concentration 

criteria) are presented in Figure 24 and Figure 25, respectively.  For comparative purposes, 

estimates of R and CFW derived directly from the load and concentration data at the site are 

also presented. 
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Figure 24: Estimates of Rmedian for the case study site based on the three alternative models 

(GM: global model; CCM: catchment characteristics model; DCM: distributional 

characteristics model) and on the observed load and median concentrations (Obs). The error 

bars indicate the 95% confidence intervals. 

 

 

Figure 25: Estimates of target CFW for the case study site  to meet the concentration criteria 

in Table 14. CFW  is calculated following equation 1a and using Rmedian derived from each of 

the three models and the observed Rmedian value. The error bars indicate the 95% confidence 

intervals. 

We note that there may be situations, such as scenario modelling, where the target load does 

not need to be known in absolute terms, it may be sufficient to know only the percentage 

reduction in load that is required to achieve the concentration criteria. In these situations, it is 

not necessary to estimate R and the percentage reduction can be estimated as follows:   

 𝐿𝑜𝑎𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛% =
𝐶𝑚𝑒𝑑𝑖𝑎𝑛−𝐶𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎

𝐶𝑚𝑒𝑑𝑖𝑎𝑛
× 100  (Equation 13) 

Where 𝐿𝑜𝑎𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛% is the required percentage reduction, Cmedian is the observed median 

load and Ccriteria is the concentration criteria. The 𝐿𝑜𝑎𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛%  to achieve the 

concentration criteria shown in Table 14 for the case study site and calculated using equation 
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13 is summarised in Table 20. The uncertainty of 𝐿𝑜𝑎𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛% is calculated from the 

uncertainty of Cmedian (as described in section 4.2.3). 

Table 20: Summary of percentage reductions in loads required to achieve the concentration 

criteria for the case study site.  

Nutrient variable Ccriteria (mg L-1) Cmedian(mg L-1) LoadReduction%(%) 

DRP 0.0691 0.09  (0.086-0.092) 23%     (20-25%) 

TN 0.351 2.115  (1.90-2.42) 83%     (82-85%) 

 

5.12 Estimates of Cmedian given a load estimate 

Assuming an example where we did not know Cmedian, but did have an estimate of CFW it is 

possible to estimate the median concentration Cmedian following equation 1.  Estimates of 

Cmedian based on R estimated from the three alternative models, along with the 95% confidence 

intervals are demonstrated in Figure 26 

 

Figure 26: Estimates of Cmedian for the case study site  Cmedian is calculated following equation 

1 and using Rmedian derived from each of the three models.  The “Obs” Cmedian value is the 

observed median value at the study site. The error bars indicate the 95% confidence 

intervals. 
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6 Discussion 

This study confirms results of an earlier study (described in Oehler and Elliott, 2011) and 

shows that R does not generally have a value of unity and that it is spatially variable. This 

indicates that the target load for a catchment is not well estimated by taking the concentration 

criteria (expressed as a median concentration) and multiplying by a mean average flow. The 

models we have derived provide alternative, more accurate, methods for deriving target loads 

from concentration criteria, or alternatively, deriving a concentration given a load.  

We have most confidence in the models associated with the median statistic (predictions of 

Rmedian) and the least confidence in the models associated the 95th percentile statistic 

(prediction of Rp95). This arises from the uncertainty of estimates of the statistics themselves, 

combined with the uncertainties in the load estimates. The 95th percentile value is imprecisely 

estimated from five years of monthly data and the mean is also subject to considerable 

uncertainty due to the leverage exerted by the most extreme observations. Although the 95th 

percentile value is used in regulations (e.g., it defines the attribute state for nitrate toxicity in 

the 2017 NPS-FM; NZ Government, 2017), its value is very uncertain when estimated from 

five years of monthly observations. In addition, the estimated confidence intervals for the 95th 

percentile values are themselves uncertain due to the small sample size.  We also note that 

the methods that combine the uncertainties for CFW and Cstatistic to evaluate the uncertainty of 

Rstatistic assume that the component errors are uncorrelated. This assumption potentially leads 

to an overestimate of the true uncertainty for R. 

We defined three types of models for predicting R that provide differing compromises between 

ease of application and uncertainty. The global models simply assign a constant value of R 

for each nutrient variable and R statistic (i.e., Rmean, Rmedian and Rp95).  These models are simple 

to use and require no additional detail about the catchment or distribution of flow and 

concentration, however, the global models have the greatest uncertainty.   

The catchment characteristics models are based on catchment information that is associated 

with the REC digital drainage network. These models have national coverage; however, the 

estimates of R must be taken from a lookup table, rather that calculated by the user. The 

catchment characteristics models have benefits compared to the global model in terms of both 

accuracy and precision. 

The distributional characteristics models require paired observations of flow and concentration 

at a site as well as information about the long-term flow distribution.  The model is based on a 

linear regression and is expressed as a formula that enables R to be calculated by the user. 

This approach to the estimation of R has the least uncertainty but the data requirements mean 

this method can only be applied at sites with water quality and continuous flow data. It is noted 

that R can be estimated directly at sites with water quality and continuous flow data. The 

primary aim of the distributional characteristics model was to identify the characteristics of the 

flow, concentration and joint flow concentration distributions that most significantly influence 

R, and hence to provide some insights in the mechanisms that cause variation in R. 

From the global model, we observe that the majority of site and nutrient variable combinations 

have values of Rmedian that are less than one.  This implies that studies where load targets 

have been set based on a median concentration limit multiplied by the mean flow are likely to 

under-estimate the load target that will achieve the concentration criteria (i.e. they are overly 

restrictive, or conservative). This is particularly the case for TP, which has a median Rmedian of 

0.55. The relationships defined by both the catchment characteristics and distributional 

characteristics models indicate that large Rmedian values tended to be associated with locations 
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with baseflow-dominated or stable flow regimes (e.g., spring fed rivers of the Canterbury plains 

and Bay of Plenty), where dilution at high flows occurs. In these types of rivers, setting load 

targets based on a median concentration limit multiplied by the mean flow will likely 

overestimate the load target (i.e., the load target will not be sufficiently low to achieve the 

concentration criteria). 

A significant assumption associated with the use of R is that it is constant at a site over a 

range of loads and associated concentrations (i.e., it is assumed the ratio of loads to 

concentration stays the same at a site when the load changes). This study did not aim to test 

the robustness of this assumption, but the models do indicate that between-site variation in R 

is primarily associated with hydrological variation. For example, the most important predictors 

in the catchment characteristics models were hydrological characteristics (Figure 14). If 

actions that change nutrient loads are unlikely to significantly change hydrological regimes, it 

seems reasonable to assume that R is a constant at a site over a range of contaminant loads.  

For TN and NO3N, the proportion of stock units attributable to dairy cows was also an 

important predictor; as this proportion increases so does R. This might indicate that the source 

of the nutrient or aspects of nutrient supply from the landscape to the river are important 

determinants of R. Investigating this further was outside the scope of this study but this seems 

to be a relevant research question given that changes in nutrient loads are often associated 

with changes in types of stock and farm systems. The sensitivity analysis of the distributional 

characteristics model (Figure 20) indicates that R is most influenced by the shape of the C-Q 

rating curve. The C-Q rating curve is the outcome of the flow regime interacting with the source 

of contaminants. This suggests that the assumption that R is constant at a site requires 

considering whether the flow-concentration relationships might change in response to 

management actions that change contaminant loads. No change to the flow-concentration 

relationship may be a reasonable assumption if actions are not changing the source of the 

nutrient or aspects of nutrient supply from the landscape to the river. However, changes such 

as the removal of a point source contribution, or extensive edge of field mitigation measures, 

might have significant effects on C-Q rating curves, and consequently may change R at a site. 

We note that all our models have large uncertainty bounds for R estimates. This means that if 

variation in R at a site is associated, at least partly, with the supply of contaminants and not 

just hydrological regimes, at-site changes in R may be within the range of uncertainties of our 

estimates of R.  

Our methods for estimating R will have application in studies that use catchment models based 

on annual loads (e.g., the CLUES model; Elliott et al., 2016). Our models can be used to 

translate the predictions of loads by these models to concentrations. This transformation of 

loads to concentration will generally be a requirement of the process of developing options for 

objectives and limits; and this was the reason for the original development of R by Oehler and 

Elliott (2011). However, in objective and limit setting processes there will often be a known 

current concentration and an estimated current load. In addition, there will often be one or 

more prescribed concentration criteria that are associated with possible objectives. In these 

circumstances, the question will be: “what is the load reduction that will achieve the 

concentration criteria?”. The analysis may often be facilitated by assuming that the required 

percentage change in the load is equivalent to the percentage change in the concentration 

statistic (to go from the current concentration to the criteria). This analysis does not require 

knowing R but does assume that R is constant at a site over a range of loads and associated 

concentrations.  
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Appendix A Details about stocking density calculations 

The area occupied by different land uses is mapped nationally by the Land Use and Carbon 

Analysis System: LUCAS (Newsome et al., 2018). LUCAS was developed for reporting and 

accounting of carbon fluxes and greenhouse gas emissions, as required by the United Nations 

Framework on Climate Change and the Kyoto Protocol (MFE, 2012). LUCAS maps include 

12 land use classes, including plantation forests and grazed grassland, and pertain to four 

time periods, including 2016 which we used in this study. Land use classes were prepared 

using high resolution imagery from the SPOT-5 satellite (MFE, 2012). Auxiliary datasets were 

also used to differentiate and map the land use classes, in particular grazed grasslands, as 

described by (Newsome et al. 2018). Land use classes are mapped at a minimum mapping 

area of 1 ha and include natural and plantation forests and grazed grassland, which is 

differentiated into high and low producing subclasses. 

The numbers of animals in four stock type categories (dairy cows, beef cows, sheep and deer) 

are collected on all enterprises involved in livestock farming by Statistics New Zealand as part 

of an annual agricultural production census (APC). We used these data to produce measures 

of the density of animals on land used for pastoral agriculture in the monitoring site catchments 

and further modified these to indicate the land use intensity. To produce these measures, we 

used the highest resolution versions of APC data that are publicly available, which are 

associated with a spatial layer comprising 960 hexagonal grid cells (35,000 ha) that cover all 

New Zealand (https://statisticsnz.shinyapps.io/livestock_numbers/). For each cell, we used 

numbers of animals in each stock type categories for the most recent census year (2017). We 

converted the stock numbers associated with the hexagonal grid and each census year into 

the density of animals of each stock type in every sub-catchment defined by a digital 

representation of New Zealand’s river network in five steps. First, all areas categorized by 

LUCAS as grazed grassland (combining high and low producing subclasses) were intersected 

with the hexagonal grid. Second, the animals of each stock type in each hexagonal grid cell 

were evenly distributed over the grazed grassland within the cell and the animal numbers were 

converted to densities (number of animals per hectare of grazed grassland). The animal 

numbers in 2017 were distributed to the grazed grassland associated with the 2016 version of 

LUCAS. Third, the combined hexagonal grid cells and grazed grassland were intersected with 

sub-catchment boundaries defined by the digital drainage network. Fourth, the numbers of 

animals of each stock type in each sub-catchment were calculated as the sum of each area 

of grazed grassland within each sub-catchment multiplied by the corresponding animal 

densities. Fifth, the numbers of animals of each stock type upstream of each segment of the 

network were calculated by summing the animals (density multiplied by area) in that segment’s 

sub-catchment and all upstream sub-catchments.  

We then converted the animal numbers to ‘stock units’, which are a measure of metabolic 

demand by livestock that is commonly used in New Zealand (Parker, 1998) and used these 

values as indicators of land use intensity. The numbers of animals upstream of each segment 

of the river network were converted to SU density (SU ha-1) by multiplying the numbers of 

animals of each stock type its SU equivalent (Table 21). The SU density was used to represent 

catchment land use intensity.  

https://statisticsnz.shinyapps.io/livestock_numbers/
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Table 21. Stock unit equivalents per animal for 2017.  Derived from Parker (1998) and 

Trafford and Trafford (2011). 

StockType  2017 

Sheep 1.35 

Beef 6.9 

Dairy 8 

Deer 2.3 

 

Each version of LUCAS defines areas that are occupied by plantation forest. We used these 

data to calculate the proportion of catchment area occupied by plantation forest for each 

monitoring site in three steps. First we intersected the areas categorized as plantation forest 

with the sub-catchment boundaries of the digital drainage network. Second, the area of 

plantation forest in each sub-catchment was calculated for each sub-catchment. Third, the 

proportion area occupied by plantation forest upstream of each segment of the network was 

calculated by summing the area of forest in that segment’s sub-catchment and all upstream 

sub-catchments and dividing by the total catchment area (%). 
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Appendix B Maps of concentration statistics 

 

Figure 27: Maps of observed mean concentrations across observation sites 
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Figure 28: Maps of observed median concentrations across observation sites 
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Figure 29: Maps of observed 95th percentile across observation sites 
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Appendix C Maps of calculated Loads 

 

Figure 30: Maps of estimated loads normalised by mean flows, (flow weighted 

concentrations), across observation sites. 
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Figure 31: Maps of estimated loads normalised by catchment area, (export coefficients) 

across observation sites. 

 


